Hostname: page-component-7dc689bd49-sqk25 Total loading time: 0 Render date: 2023-03-21T03:57:16.224Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Structure and Ferroelectric Behaviour of Step-Crystallized PbZr0.5Ti0.5O3 Thin Films Prepared by Electron Beam Evaporation of Multi-Component Oxides

Published online by Cambridge University Press:  15 February 2011

Shaban R. Darvish
Affiliation:
National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110 012, India
A.C. Rastogi
Affiliation:
National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110 012, India
Get access

Abstract

Preparation of ferroelectric lead zirconate titanate (PZT) thin film by electron beam evaporation of multicomponent oxides followed by a post-deposition synthesis of PZT films by step-annealing under O2 ambient is described. Incipient formation of Pb3O4-ZrO2-PbTiO3 solid solution by a 600°C annealing is required for crystallization of PZT phase. Two morphotropic phase boundary reactions between solid solution phase with TiO2 and PbTiO3 with ZrO2 are proposed for PZT growth. Polarization and capacitance-voltage hysteresis data are presented to establish ferroelectric behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yi, G., Wo, Z., and Sayer, M., J. Appl. Phys., 64, 2717 (1988)CrossRefGoogle Scholar
2. Krupanidhi, S. B., Maffei, N., Sayer, M. and El-Assal, K.. J. Appl. Phys., 54, 6601 (1983)CrossRefGoogle Scholar
3. Krupanidhi, S.B., Hu, H., and Kumar, V., J. Appl. Phys., 71, 376 (1992)CrossRefGoogle Scholar
4. Oikawa, M., and Toda, K., Appl. Phys. Lett., 29, 491 (1976)CrossRefGoogle Scholar
5. Chandratreya, S.S., Fulrath, R.M., and Pask, J.A., J. Am. Ceram. Soc, 64, 422 (1981)CrossRefGoogle Scholar
6. Hiremath, B.V., Kingon, A.I., and Biggers, J.V., J. Am. Ceram. Soc, 66, 790 (1983)CrossRefGoogle Scholar
7. Jaffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceramics (Academie Press, London, 1971) pp. 141 Google Scholar
8. Abadir, M.F., Gadalla, A.M., and El-Agamawi, Y.M., Trans, and J. Brit. Ceram. Soc, 75, 68 (1976)Google Scholar
9. Chikarmane, V., Sudhama, C., Kim, J.Y., Lee, J., Tasch, A., and Novak, S., J. Vac. Sci. Technol. A10, 1562 (1992)CrossRefGoogle Scholar
10. Matsuo, Y., and Sasaki, H., J. Am. Ceram. Soc, 48, 289 (1965)CrossRefGoogle Scholar
11. Hankey, D.L., and Biggers, J.V., J. Am. Ceram. Soc, 64, C172 (1981)CrossRefGoogle Scholar
12. Hu, H., Peng, C.J., and Krupanidhi, S.B., Thin Solid Films, 223, 327 (1993)CrossRefGoogle Scholar
13. Myers, S.A., and Chapin, L.N., in Ferroeletric Thin Films I. edited by Myers, E.R., and Kingon, A.I. (Mat. Res. Soc. Proc 200, Pittsburgh, PA, 1990) pp. 231 Google Scholar
14. Eichorst, D.J., and Baron, C.J., in Ferroelectric Thin Films III, edited by Myers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mat. Res. Soc. Proc 310, Pittsburgh, PA, 1993), pp. 201 Google Scholar