Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-t82dr Total loading time: 0.175 Render date: 2021-12-07T08:07:33.068Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Structural, Optical and Electrical Properties of Spray Deposited Fluorine Doped ZnO Thin Films

Published online by Cambridge University Press:  06 March 2013

Kondaiah Paruchuri
Affiliation:
Department of Physics, Sri Venkateswara University, Tirupati – 517 502, India
Vanjari Sundara Raja
Affiliation:
Department of Physics, Sri Venkateswara University, Tirupati – 517 502, India
Suda Uthanna
Affiliation:
Department of Physics, Sri Venkateswara University, Tirupati – 517 502, India
N. Ravi Chandra Raju
Affiliation:
Department of Electrical Engineering, IIT Bombay, Mumbai – 400 085, India
Get access

Abstract

Highly transparent and conducting Fluorine doped zinc oxide thin films were deposited using spray pyrolysis method on glass substrates held at 450 °C. The X-ray diffraction study revealed that as the dopant concentration increases in ZnO films, the intensity of the preferential orientation of (002) reflection decreased and (101) was found to increase up to 5 at. % F. The crystallite size was varied from 40 to 50 nm with dopant concentration. The optical band gap of the un-doped films was 3.30 eV and it increased to 3.34 eV for 3 at. % F. The refractive index of the films was increased from 2.05 to 2.18 with the increase of dopant concentration from 0 to 5 at. %. The scanning electron microscopy results depicted that the microstructure of ZnO: F films highly influenced by the fluorine doping. After annealing the films in hydrogen atmosphere, the resistivity of the films decreased as increase the dopant concentration and it is 4×10−3 Ω cm for 3at. % F beyond which it increased. The mobility of the charge carriers was 14 cm2/ V sec and the carrier concentration was 7.8×1019 cm3 obtained for the films doped with 3 at. % of fluorine concentration in the starting solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kang, D. W., Kuk, S. H., SunJi, K., Lee, H. M. and KooHan, M., Solar Energy Mater. Solar Cells 95, 138 (2011).CrossRef
Hwang, D. K., Oh, M. S., Lim, J. H. and Park, S. J., J. Phys. D: Appl. Phys. 40, R387 (2007).CrossRef
Vijayalakshmi, K., Ravi dhas, C., Vasanthi Pillay, V. and Gopalakrishna, D., Thin Solid Films 519, 3378 (2011).CrossRef
Minami, T., MRS Bull. 25, 28 (2000).CrossRef
Ellmer, K., J. Phys. D 34, 3097 (2001).CrossRef
Look, D. C., Farlow, G. C., Reunchan, P., Limpijumnong, S., Zhang, S. B. and Nordlund, K., Phys. Rev. Lett. 95 225502–1 (2005).CrossRef
Gao, L., Zhang, Y., Zhang, J. M. and Xu, K. W., Appl. Surf. Sci. 257, 2498 (2011).CrossRef
Kim, Y., Lee, W., Jung, D. R., Kim, J., Nam, S., Kim, H., and Park, B., Appl. Phys. Lett. 96, 171902 (2010).CrossRef
Yang, Z. and Liu, J. L., J. Vac. Sci. Technol. B 28, No. 3, C3D6 (2010).CrossRef
Menon, R., Gupta, V., Tan, H. H., Sreenivas, K., and Jagadish, C., J. Appl. Phys. 109, 064905 (2011).CrossRef
Hlaing Oo, W. M., Saraf, L. V., Engelhard, M. H., Shutthanandan, V., Bergman, L., Huso, J., and Mc Cluskey, M. D., J. Appl. Phys. 105, 013715 (2009).
Ilican, S., Yakuphanoglu, F., Caglar, M. and Caglar, Y., J. Alloys Comp. 509 5290 (2011).CrossRef
Samanta, K., Bhattacharya, P. and Katiyar, R. S., J. Appl. Phys. 108, 113501 (2010).CrossRef
Krunks, M., Katerski, A., Dedova, T., Oja Acik, I. and Mere, A., Solar Energy Mater. Solar Cells 92, 1016 (2008).CrossRef
Chen, H. X., Ding, J. J., and Ma, S. Y., Physica E 42, 1487 (2010).CrossRef
Burstein, E., Phys. Rev. 93, 632 (1954).CrossRef
Liu, W. W., Yao, B.. Li, Y. F., Li, B. H., Zhang, Z. Z., Shan, C. X., Zhao, D. X., Zhang, J. Y., Shen, D. Z. and Fan, X. W., Thin Solid Films 518, 3923 (2010).CrossRef
Bouderbala, M., Hamzaoui, S., Adnane, M., Sahraoui, T. and Zerdali, M., Thin Solid Films 517, 1572 (2009).CrossRef
Zhu, B. L., Wang, J., Zhu, S. J., Wu, J., Wu, R., Zeng, D. W. and Xie, C. S. Thin Solid Films 519, 3809 (2011).CrossRef
Anandhi, R., Mohan, R., Swaminathan, K. and Ravichandran, K., Superlattices Microstruct. 51, 680 (2012).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Structural, Optical and Electrical Properties of Spray Deposited Fluorine Doped ZnO Thin Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Structural, Optical and Electrical Properties of Spray Deposited Fluorine Doped ZnO Thin Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Structural, Optical and Electrical Properties of Spray Deposited Fluorine Doped ZnO Thin Films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *