Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-ls6xp Total loading time: 0.283 Render date: 2022-11-27T17:04:45.931Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Structural and Optical Properties of InGaN/GaN Multi-Quantum Well Structures with Different Indium Compositions

Published online by Cambridge University Press:  01 February 2011

Chang-Soo Kim
Affiliation:
National Research Lab., Materials Evaluation Center, Korea Research Institute of Standards and Science(KRISS), Taejon, Korea 305-600
Sam-Kyu Noh
Affiliation:
National Research Lab., Materials Evaluation Center, Korea Research Institute of Standards and Science(KRISS), Taejon, Korea 305-600
Kyuhan Lee
Affiliation:
Optronix Inc., Taejon, Korea 305-380
Sunwoon Kim
Affiliation:
Photonic Device Group, Samsung Electro-Mechanics, Suwon, Korea 442-743
Jay P. Song
Affiliation:
SongJee Industrial Corporation, Sungnam, Korea 463-500
Get access

Abstract

The structural and optical properties of InGaN/GaN multiple quantum wells (MQWs) grown on sapphire by MOCVD have been investigated using high-resolution XRD, PL and TEM. The samples consisted of 10 periods of InGaN wells with 6.5nm thickness. The designed indium compositions were 15, 20, 25 and 30% (samples C15, C20, C25, C30, respectively). The thickness of GaN barrier was 7.5nm. The MQW in sample C15 maintained lattice coherency with the GaN epilayer underneath, the MQWs in the other samples, however, experienced lattice relaxation. The crystallinity of the samples decreased considerably with In concentration. As In composition increased, PL peak energy showed a red-shift, and the FWHM of the peaks increased. The increase in the FWHM is attributed to the defects due to the lattice relaxation. For C25 the PL peak intensity increased sharply in spite of the defects due to the lattice relaxation of the sample. It is concluded that the results are related to the In-rich region due to indium phase separation which was observed by TEM image.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ambacher, O, J. Phys. D: Appl. Phys. 32, 2653 (1998).CrossRefGoogle Scholar
2. Matthews, J. W. and Blackeslee, A. E., J. Crystal Growth 32, 256 (1974).Google Scholar
3. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S. and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997)CrossRefGoogle Scholar
4. Tachibana, K., Someya, T., Arakawa, Y., Werner, R. and , Forchel, Appl. Phys. Lett. 75, 2605 (1999)CrossRefGoogle Scholar
5. Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., Baars, S. P. Den and Speck, J. S., Appl. Phys. Lett. 67, 1541 (1995).CrossRefGoogle Scholar
6. Bauer, Gunther and Richter, Wolfgang, Optical Characterization of Epitaxial Semiconductor Layer (Springer, New York, 1996), pp. 294298.CrossRefGoogle Scholar
7. Fewster, Paul F, X-Ray Scattering from Semiconductors (Imperial College Press, London, 2000), pp. 244253.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Structural and Optical Properties of InGaN/GaN Multi-Quantum Well Structures with Different Indium Compositions
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Structural and Optical Properties of InGaN/GaN Multi-Quantum Well Structures with Different Indium Compositions
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Structural and Optical Properties of InGaN/GaN Multi-Quantum Well Structures with Different Indium Compositions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *