Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-xt4p2 Total loading time: 0.397 Render date: 2022-05-24T22:23:16.110Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Structural and electrical characterization of carbon nanotube interconnects by combined transmission electron microscopy and scanning spreading resistance microscopy

Published online by Cambridge University Press:  13 September 2011

Thomas Hantschel
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
Xiaoxing Ke
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Nicolo’ Chiodarelli
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. Department of Electrical Engineering, K. U. Leuven, B-3001 Leuven, Belgium.
Andreas Schulze
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. Instituut voor Kern- en Stralingsfysica, K. U. Leuven, B-3001 Leuven, Belgium.
Hugo Bender
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
Pierre Eyben
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium.
Sara Bals
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Wilfried Vandervorst
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium. Instituut voor Kern- en Stralingsfysica, K. U. Leuven, B-3001 Leuven, Belgium.
Get access

Abstract

The use of carbon nanotubes (CNT) as interconnects in future integrated circuits (IC) is being considered as a replacement for copper. As this research needs also innovative metrology solutions, we have developed a combined approach for the plane-view analysis of CNT integrated in contact holes where transmission electron microscopy (TEM) enables the quantitative measurement of density and structure of the CNT and where scanning spreading resistance microscopy (SSRM) is used to electrically map the distribution of the CNT. This paper explains the used methodologies in detail and presents results from 300 nm diameter contact holes filled with CNT of 8-12 nm in diameter and a density of about 2 x 1011 cm-2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nihei, M., Kawabata, A., and Awano, Y., Jpn. J. Appl. Phys. 42, L721 (2003).CrossRefGoogle Scholar
[2] Chiodarelli, N., Li, Y., Cott, D.J., Mertens, S., Peys, N., Heyns, M., De Gendt, S., Groeseneken, G., and Vereecken, P. M., Microelectron. Eng., doi:10.1016/j.mee.2010.06.017 (2010).Google Scholar
[3] Dijon, J., Okuno, H., Fayolle, M., Vo, T., Pontcharra, J., Acquaviva, D, Bouvet, D., Ionescu, A. M., Esconjauregui, C. S., Capraro, B., Quesnel, E., and Robertson, J., IEDM, 760 (2010).Google Scholar
[4] Ke, X., Bals, S., Romo-Negreira, A., Hantschel, T., Bender, H., and Van Tendeloo, G., Ultramicroscopy 109, 1353 (2009).CrossRefGoogle Scholar
[5] Hantschel, T., Ryan, P., Palanne, S., Richard, O., Arstila, K., Verhulst, A.S., Bender, H., Ke, X., and Vandervorst, W., Mater. Res. Soc. Symp. Proc. 108, 1081–P17-04 (2008).Google Scholar
[6] Ke, X., Bals, S., Cott, D., Hantschel, T., Bender, H., and Van Tendeloo, G., Microsc. Microanal. 16, 210 (2010).CrossRefGoogle Scholar
[7] Eyben, P., Vandervorst, W., Alvarez, D., Xu, M., Fouchier, M., in: Kalinin, S., Gruverman, A. (Eds.), Scanning Probe Microscopy, Springer, New York, 31 (2007).Google Scholar
[8] Schulze, A., Hantschel, T., Eyben, P., Verhulst, A. S., Rooyackers, R., Vandooren, A., Mody, J., Nazir, A., Leonelli, D., and Vandervorst, W., Nanotechnology 22, 185701 (2011).CrossRefGoogle Scholar
[9] Coiffic, J. C., Mariolle, D., Chevalier, N., Olivier, S., Lafond, D., Fayolle, M., Maitrejean, S., and Le Poche, H., Appl. Phys. Lett. 92, 223510 (2008).CrossRefGoogle Scholar
[10] Fourdrinier, L., Le Poche, H., Chevalier, N., Mariolle, D., and Rouviere, E., J. Appl. Phys. 104, 114305 (2008).CrossRefGoogle Scholar
[11] Hantschel, T., Demeulemeester, C., Eyben, P., Schulz, V., Richard, O., Bender, H., and Vandervorst, W., Phys. Status Solidi A 206, 2077 (2009).CrossRefGoogle Scholar
[12] Chiodarelli, N., Masahito, S., Kashiwagi, Y., Li, Y., Arstila, K., Richard, O., Cott, D.J., Heyns, M., De Gendt, S., Groeseneken, G., and Vereecken, P.M., Nanotechnology 22, 085302 (2011).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Structural and electrical characterization of carbon nanotube interconnects by combined transmission electron microscopy and scanning spreading resistance microscopy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Structural and electrical characterization of carbon nanotube interconnects by combined transmission electron microscopy and scanning spreading resistance microscopy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Structural and electrical characterization of carbon nanotube interconnects by combined transmission electron microscopy and scanning spreading resistance microscopy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *