Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-pc5cw Total loading time: 0.22 Render date: 2021-09-26T14:21:24.824Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface

Published online by Cambridge University Press:  04 June 2015

Liang Guo*
Affiliation:
Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Ave, Columbus, OH 43210, U.S.A. Department of Neuroscience, The Ohio State University, 2015 Neil Ave, Columbus, OH 43210, U.S.A.
Get access

Abstract

Conducting polymers are often employed as coatings on smooth metal electrodes to improve the electrode performance with respect to the signal-to-noise ratio for neural recording, charge-injection capacity for neural stimulation, and inducement of neural growth for electrode-tissue integration. However, adhesion of conducting polymer coatings on metal electrodes is poor, making the coating less durable and the electrical property of the electrode less stable. Moreover, conventional conducting polymers have relative low conductance, preventing their direct use as the electrode and lead material; and they are brittle, making it difficult for flexible neural electrodes to incorporate conducting polymer coatings. We have developed a new polypyrrole/polyol-borate composite film with concurrent excellent electrical and mechanical properties. We further developed a method to fabricate a stretchable multielectrode array using this new material as the sole conductor for both electrodes and leads, in contrast with the conventional approach of incorporating conducting polymers only through coating on non-stretchable metal electrodes. The resulting stretchable polymeric multielectrode array (SPMEA) was stretchable up to 23% uniaxial tensile strain with minimal losses in electrical conductivity. Electrochemical testing revealed the SPMEA’s impressive advantage for recording local field neural potentials and for epimysial stimulation of denervated skeletal muscles. As a neural interface engineer, I would also like to compare the compliant neural interfacing technology to other technologies, such as optogenetics, radiogenetics, and even a living neural interface that is currently under development in our lab.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

"Advisory Committee to the NIH Director INTERIM REPORT, Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group," National Institutes of Health, September 16, 2013 2013.
He, B., Coleman, T., Genin, G. M., Glover, G., Hu, X., Johnson, N., et al. , IEEE Trans. on Biomed. Eng., vol. 60, 2013.
Birmingham, K., Gradinaru, V., Anikeeva, P., Grill, W. M., Pikov, V., McLaughlin, B., et al. , Nature Reviews Drug Discovery, vol. 13, pp. 399400, 2014.CrossRef
Markram, H., Scientific American, vol. 306, pp. 5055, 2012.CrossRef
Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R., et al. , Neuroimage, vol. 62, pp. 22222231, 2012.CrossRef
Banks, J., Pulse, IEEE, vol. 6, pp. 1015, 2015.CrossRef
Maghribi, M., Hamilton, J., Polla, D., Rose, K., Wilson, T., and Krulevitch, P., in Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on , 2002, pp. 8083.
Lacour, S. P., Tsay, C., Wagner, S., Yu, Z., and Morrison, B., in Sensors, 2005 IEEE, 2005, p. 4 pp.
Xu, L., Gutbrod, S. R., Bonifas, A. P., Su, Y., Sulkin, M. S., Lu, N., et al. , Nature communications, vol. 5, 2014.
Kim, D.-H., Viventi, J., Amsden, J. J., Xiao, J., Vigeland, L., Kim, Y.-S., et al. , Nature materials, vol. 9, pp. 511517, 2010.CrossRef
Guo, L., Guvanasen, G. S., Liu, X., Tuthill, C., Nichols, T. R., and DeWeerth, S. P., IEEE Transactions on Biomedical Circuits and Systems, vol. 7, pp. 110, Feb 2013.
Kotov, N. A., Winter, J. O., Clements, I. P., Jan, E., Timko, B. P., Campidelli, S., et al. , Advanced Materials, vol. 21, pp. 39704004, 2009.CrossRef
Kim, G. B., Fattahi, P., and Abidian, M. R., Biomaterials Surface Science, pp. 539565, 2013.
Guo, L., Ma, M., Zhang, N., Langer, R., and Anderson, D. G., Adv Mater, vol. 26, pp. 1427–33, Mar 2014.CrossRef
Cheung, K. C., Biomedical microdevices, vol. 9, pp. 923938, 2007.CrossRef
Abidian, M. R. and Martin, D. C., Advanced Functional Materials, vol. 19, pp. 573585, 2009.CrossRef
Ware, T., Simon, D., Rennaker, R. L., and Voit, W., Polymer Reviews, vol. 53, pp. 108129, 2013.CrossRef
Lacour, S. P., Benmerah, S., Tarte, E., FitzGerald, J., Serra, J., McMahon, S., et al. , Medical & biological engineering & computing, vol. 48, pp. 945954, 2010.CrossRef
Lacour, S. P., Chan, D., Wagner, S., Li, T., and Suo, Z., Applied Physics Letters, vol. 88, p.204103, 2006.
Guo, L., Meacham, K. W., Hochman, S., and DeWeerth, S. P., IEEE Trans Biomed Eng, vol. 57, pp. 2485–94, Oct 2010.
Ravichandran, R., Sundarrajan, S., Venugopal, J. R., Mukherjee, S., and Ramakrishna, S., Journal of the Royal Society Interface, vol. 7, pp. S559S579, Oct 6 2010.CrossRef
Green, R. A., Lovell, N. H., Wallace, G. G., and Poole-Warren, L. A., Biomaterials, vol. 29, pp. 33933399, Aug-Sep 2008.CrossRef
Guimard, N. K., Gomez, N., and Schmidt, C. E., Progress in Polymer Science, vol. 32, pp. 876921, Aug-Sep 2007.CrossRef
Khodagholy, D., Doublet, T., Gurfinkel, M., Quilichini, P., Ismailova, E., Leleux, P., et al. , Advanced Materials, vol. 23, pp. H268H272, 2011.CrossRef
Kozai, T. D. Y., Langhals, N. B., Patel, P. R., Deng, X., Zhang, H., Smith, K. L., et al. , Nature materials, vol. 11, pp. 10651073, 2012.CrossRef
Keohan, F., Wei, X. F., Wongsarnpigoon, A., Lazaro, E., Darga, J. E., and Grill, W. M., Journal of Biomaterials Science, Polymer Edition, vol. 18, pp. 10571073, 2007.CrossRef
Blau, A., Murr, A., Wolff, S., Sernagor, E., Medini, P., Iurilli, G., et al. , Biomaterials, vol. 32, pp. 17781786, 2011.CrossRef
Ma, M. M., Guo, L., Anderson, D. G., and Langer, R., Science, vol. 339, pp. 186189, Jan 11 2013.CrossRef
Minev, I. and Lacour, S., Applied Physics Letters, vol. 97, p. 043707, 2010.CrossRef
Guo, L., "High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing," Georgia Institute of Technology, 2011.
Hwang, S. W., Song, J. K., Huang, X., Cheng, H., Kang, S. K., Kim, B. H., et al. , Advanced Materials, vol. 26, pp. 39053911, 2014.CrossRef
de Jonge, L. T., Leeuwenburgh, S. C., Wolke, J. G., and Jansen, J. A., Pharmaceutical research, vol. 25, pp. 23572369, 2008.CrossRef
Castner, D. G. and Ratner, B. D., Surface Science, vol. 500, pp. 2860, 2002.CrossRef
Kane-Maguire, L. and Wallace, G., Synthetic metals, vol. 119, pp. 3942, 2001.CrossRef
He, W. and Bellamkonda, R. V., Biomaterials, vol. 26, pp. 29832990, 2005.CrossRef
Ateh, D., Navsaria, H., and Vadgama, P., Journal of the royal society interface, vol. 3, pp. 741752, 2006.CrossRef
George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., et al. , Biomaterials, vol. 26, pp. 35113519, 2005.CrossRef
Schmidt, C. E., Shastri, V. R., Vacanti, J. P., and Langer, R., Proceedings of the National Academy of Sciences, vol. 94, pp. 89488953, 1997.CrossRef
Kotwal, A. and Schmidt, C. E., Biomaterials, vol. 22, pp. 10551064, 2001.CrossRefPubMed
Polikov, V. S., Tresco, P. A., and Reichert, W. M., Journal of neuroscience methods, vol. 148, pp. 118, 2005.CrossRef
Cui, X., Lee, V. A., Raphael, Y., Wiler, J. A., Hetke, J. F., Anderson, D. J., et al. , Journal of biomedical materials research, vol. 56, pp. 261272, 2001.3.0.CO;2-I>CrossRef
Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J. H., Qing, Q., et al. , Nature materials, vol. 11, pp. 986994, 2012.CrossRef
Gomez, N., Lee, J. Y., Nickels, J. D., and Schmidt, C. E., Advanced functional materials, vol. 17, pp. 16451653, 2007.CrossRef
LaVan, D. A., George, P. M., and Langer, R., Angewandte Chemie, vol. 115, pp. 13001303, 2003.CrossRef
Münstedt, H., Polymer, vol. 27, pp. 899904, 1986.CrossRef
Sun, B., Jones, J., Burford, R., and Skyllas-Kazacos, M., Journal of materials Science, vol. 24, pp. 40244029, 1989.CrossRef
Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M., and Pralle, A., Nature nanotechnology, vol. 5, pp. 602606, 2010.CrossRef
Marin, C. and Fernandez, E., Front Neuroeng, vol. 3, p. 8, 2010.CrossRef
Fenno, L., Yizhar, O., and Deisseroth, K., Annu Rev Neurosci, vol. 34, pp. 389412, 2011.CrossRef
Bernstein, J. G., Garrity, P. A., and Boyden, E. S., Current opinion in neurobiology, vol. 22, pp. 6171, 2012.CrossRef
Proft, J. and Weiss, N., Communicative & integrative biology, vol. 5, pp. 227229, 2012.CrossRef
Alivisatos, A. P., Andrews, A. M., Boyden, E. S., Chun, M., Church, G. M., Deisseroth, K., et al. , ACS Nano, vol. 7, pp. 1850–66, Mar 26 2013.CrossRef
Stanley, S. A., Gagner, J. E., Damanpour, S., Yoshida, M., Dordick, J. S., and Friedman, J. M., Science, vol. 336, pp. 604608, 2012.CrossRef
Rosen, M. R., Brink, P. R., Cohen, I. S., and Robinson, R. B., Cardiovascular Research, vol. 64, pp. 1223, Oct 1 2004.CrossRef
Lu, T. K., Khalil, A. S., and Collins, J. J., Nature Biotechnology, vol. 27, pp. 11391150, Dec 2009.CrossRef
Mukherji, S. and van Oudenaarden, A., Nature reviews. Genetics, vol. 10, pp. 859–71, Dec 2009.CrossRef
Langer, R. and Vacanti, J. P., "Tissue Engineering," Science, vol. 260, pp. 920926, May 14 1993.
Daniels, M. P., Lowe, B. T., Shah, S., Ma, J., Samuelsson, S. J., Lugo, B., et al. , Microsc Res Tech, vol. 49, pp. 2637, Apr 1 2000.3.0.CO;2-8>CrossRef
Das, M., Rumsey, J. W., Gregory, C. A., Bhargava, N., Kang, J. F., Molnar, P., et al. , Neuroscience, vol. 146, pp. 481–8, May 11 2007.CrossRef
Bellamkonda, R. V., Biomaterials, vol. 27, pp. 3515–8, Jul 2006.
Daly, W., Yao, L., Zeugolis, D., Windebank, A., and Pandit, A., J R Soc Interface, vol. 9, pp. 202–21, Feb 7 2012.CrossRef
Taylor, A. M., Blurton-Jones, M., Rhee, S. W., Cribbs, D. H., Cotman, C. W., and Jeon, N. L., Nat Methods, vol. 2, pp. 599605, Aug 2005.CrossRef
David, S. and Aguayo, A. J., Science, vol. 214, pp. 931933, 1981.CrossRef
Kennedy, P. R., Journal of Neuroscience Methods, vol. 29, pp. 181193, Sep 1989.CrossRef
Benfey, M. and Aguayo, A. J., Nature, vol. 296, pp. 150152, 1982.CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *