Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-54nbv Total loading time: 0.228 Render date: 2021-07-26T06:04:37.464Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Strengths and Limitations of the Vacancy Engineering Approach for the Control of Dopant Diffusion and Activation in Silicon

Published online by Cambridge University Press:  01 February 2011

Alain Claverie
Affiliation:
claverie@cemes.fr, CEMES-CNRS, nMat Group, 29, rue J. Marvig, BP4347, Toulouse, 31055, France, 33 5 62 25 79 00
Fuccio Cristiano
Affiliation:
cfuccio@laas.fr, LAAS / CNRS, 7 av. du Col. Roche, toulouse, 31077, France
Mathieu Gavelle
Affiliation:
mgavelle@laas.fr, LAAS / CNRS, 7 av. du Col. Roche, toulouse, 31077, France
Fabrice Sévérac
Affiliation:
fseverac@laas.fr, LAAS / CNRS, 7 av. du Col. Roche, toulouse, 31077, France
Frédéric Cayrel
Affiliation:
fred_cayrel@hotmail.fr, LMP, université de Tours, 16 rue Pierre et Marie Curie, BP 7155, Tours, 37071, France
Daniel Alquier
Affiliation:
daniel.alquier@univ-tours.fr, LMP, université de Tours, 16 rue Pierre et Marie Curie, BP 7155, Tours, 37071, France
Wilfried Lerch
Affiliation:
Wilfried.Lerch@mattson.com, Mattson, Mattson Thermal Products GmbH, Daimlerstr. 10, Dornstadt, D-89160, Germany
Silke Paul
Affiliation:
Silke.Paul@mattson.com, Mattson, Mattson Thermal Products GmbH, Daimlerstr. 10, Dornstadt, D-89160, Germany
Leonard Rubin
Affiliation:
Leonard.Rubin@axcelis.com, Axcelis, Axcelis Technologies, 108 Cherry Hill Drive, Beverly, MA, MA 01915, United States
Vito Raineri
Affiliation:
raineri@imm.crn.it, CNR / IMM, CRN / IMM, Stradale Primosole 50, Catania, 95121, Italy
Filippo Giannazzo
Affiliation:
giannazzo@imm.cnr.it, CNR / IMM, CRN / IMM, Stradale Primosole 50, Catania, 95121, Italy
Hervé Jaouen
Affiliation:
herve.jaouen@st.com, STmicroelectronics, STMicroelectronics, 850 rue Jean Monnet, Crolles, 38926, France
Ardechir Pakfar
Affiliation:
ardechir.pakfar@st.com, STmicroelectronics, STMicroelectronics, 850 rue Jean Monnet, Crolles, 38926, France
Aomar Halimaoui
Affiliation:
aomar.halimaoui@st.com, STmicroelectronics, STMicroelectronics, 850 rue Jean Monnet, Crolles, 38926, France
Claude Armand
Affiliation:
armand@insa-toulouse.fr, INSA, Genie Physique, 135, Avenue de Rangueil, toulouse, 31077, France
Nikolay Cherkashim
Affiliation:
nikolay@cemes.fr, CEMES-CNRS, nMat Group, 29, rue J. Marvig, BP4347, Toulouse, 31055, France
Olivier Marcelot
Affiliation:
marcelot@cemes.fr, CEMES-CNRS, nMat Group, 29, rue J. Marvig, BP4347, Toulouse, 31055, France
Get access

Abstract

The fabrication of highly doped and ultra-shallow junctions in silicon is a very challenging problem for the materials scientist. The activation levels which are targeted are well beyond the solubility limit of current dopants in Si and, ideally, they should not diffuse during the activation annealing. In practice, the situation is even worse and when boron is implanted into silicon excess Si interstitial atoms are generated which enhance boron diffusion and favor the formation of Boron-Silicon Interstitials Clusters (BICs). An elegant approach to overcome these difficulties is to enrich the Si layers where boron will be implanted with vacancies before or during the activation annealing. Spectacular results have been recently brought to the community showing both a significant control over dopant diffusion and an increased activation of boron in such layers. In general, the enrichment of the Si layers with vacancies is obtained by Si+ implantation at high energy. We have recently developed an alternative approach in which the vacancies are injected from populations of empty voids undergoing Ostwald ripening during annealing. While different, the effects are also spectacular. The goal of this work is to establish a fair evaluation of these different approaches under technologically relevant conditions. The application domains of both techniques are discussed and future directions for their development/improvement are indicated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Michel, A. E., Rausch, W., Ronsheim, P. A. and Kastl, R. H., Appl. Phys. Lett. 50 (7), 416 (1987)CrossRefGoogle Scholar
2. Stolk, P. A., Gossman, H. J., Eaglesham, D. J. and Poate, J. M.; Nucl. Instrum. Methods Phys. Res. B 96, 187 (1995)CrossRefGoogle Scholar
3. Claverie, A., Colombeau, B., Mauduit, B. de, Bonafos, C., Hebras, X., Assayag, G. Ben and Cristiano, F., Appl. Phys. A 76, 10251033 (2003)CrossRefGoogle Scholar
4. Pichler, P., Mat. Res. Soc. Symp. Proc., (2002) 717 103 Google Scholar
5. Pichler, P., Ortiz, C. J., Colombeau, B., Cowern, N. E. B., Lampin, E., Uppal, S., Karunaratne, M. S. A., Bonar, J. M., Willoughby, A. F. W., Claverie, A., Cristiano, F., Lerch, W. and Paul, S.; Phys. Scr. T126, 89 (2006)Google Scholar
6. Cristiano, F., Cherkashin, N., Hebras, X., Calvo, P., Mausuit, B. De, Colombeau, B., Lerch, W., Paul, S. and Claverie, A.; Nucl. Instr. Phys. Res. B216, 46 (2004)Google Scholar
7. Brinkman, J. A.; Amer. J. Phys. 24, 246 (1956)CrossRefGoogle Scholar
8. Eckstein, W. and Biersack, J.; Nucl. Intrum. Methods B 2, 550 (1984)CrossRefGoogle Scholar
9. Holland, O. W. and White, C. W.; Nucl. Intrum. Methods B 59, 353 (1991)CrossRefGoogle Scholar
10. Laânab, L., Bergaud, C., Claverie, A.:, MRS. Proc. 279, 381 (1993)CrossRefGoogle Scholar
11. Cowern, N. E. B., Smith, A. J., Colombeau, B., Gwilliam, R., Sealy, B. J. and Collart, E. J. H.; Electron Devices Meeting (2005)Google Scholar
12. Raineri, V., Schreutekamp, R. J., Saris, F. W., Janssen, K. T. F. and Kaim, R. E.; Appl. Phys. Lett. 58, 922 (1991)CrossRefGoogle Scholar
13. Venezia, V. C., Haynes, T. E., Agarwal, A., Pelaz, L., Gossmann, H. J., Jacobson, D. C. and Eaglasham, D. J.; Appl. Phys. Lett. 74, 1299 (1999)CrossRefGoogle Scholar
14. Nejim, A. and Sealy, B. J., Semicond. Sci. Technol. 18; 839 (2003)Google Scholar
15. Shao, L., Wang, X., Bennet, J., Larsen, L. and Chu, W. K.; J. Appl. Phys. 92, 4307 (2002)Google Scholar
16. Gwilliam, R., Cowern, N. E. B., Colombeau, B., Sealy, B. and Smith, A. J., Nucl. Instrum. Methods B 261; 600 (2007)CrossRefGoogle Scholar
17. Roth, E. G., Holland, O. W., Venezia, V. C. and Nielsen, B.; J. Electon. Mater. 26, 1349 (1997)CrossRefGoogle Scholar
18. Smith, A. J., B. Colombeau, Gwilliam, R., Collart, E., Cowern, N. E. B. and Sealy, B.J.; Mat. Res. Soc. Symp. Proc. 810 (2004)CrossRefGoogle Scholar
19. Cayrel, F., Alquier, D., Mathiot, D., Ventura, L., Vincent, L., Gaudin, G. and Jerisian, R.; Nucl. Instrum. Methods B 216, 291 (2004)CrossRefGoogle Scholar
20. Mirabella, S., Bruno, E., Priolo, F., Giannazo, F., Bongiorno, C., Raineri, V., Napolitani, E. and Carnera, A.; Appl. Phys. Lett. 88, 191910 (2006)CrossRefGoogle Scholar
21. Bruno, E., Mirabella, S., Napolitani, E., Giannazzo, F., Raineri, V. and Priolo, F.; Nucl. Instr. Meth. Phys. Res. B 257, 181 (2007)Google Scholar
22. Marcelot, O., Claverie, A., Cristiano, F., Cayrel, F., Alquier, D., Lerch, W., Paul, S., Rubin, L., Jaouen, H., C. Armand; Nucl. Intr. Phys. Res. B 257, 249 (2007)Google Scholar
23. Marcelot, O., Claverie, A., Alquier, D., Cayrel, F., Lerch, W., Paul, S., Rubin, L., Raineri, V., Giannazzo, F., Jaouen, H.; Sol. Stat. Phen. 131, 357 (2008)Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Strengths and Limitations of the Vacancy Engineering Approach for the Control of Dopant Diffusion and Activation in Silicon
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Strengths and Limitations of the Vacancy Engineering Approach for the Control of Dopant Diffusion and Activation in Silicon
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Strengths and Limitations of the Vacancy Engineering Approach for the Control of Dopant Diffusion and Activation in Silicon
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *