Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-ftpnm Total loading time: 0.231 Render date: 2021-09-21T06:59:46.981Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

STM Nanospectroscopic Study of Defects in Semiconductors

Published online by Cambridge University Press:  01 February 2011

Koji Maeda
Affiliation:
Dept of Appl. Phys., School of Eng., the Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo, JAPAN
Akira Hida
Affiliation:
Dept of Appl. Phys., School of Eng., the Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo, JAPAN
Yutaka Mera
Affiliation:
Dept of Appl. Phys., School of Eng., the Univ. of Tokyo, Hongo, Bunkyo-ku, Tokyo, JAPAN
Get access

Abstract

Coupling of scanning tunneling microscopy (STM) with various schemes of optical spectroscopy was found to provide powerful tools for study of crystalline defects in bulk semiconducting solids. The simplest method was applied to a subsurface defect in a bulk GaAs crystal in which the signal was acquired by detecting the change in the tunneling current reflecting a local surface swelling that occurs when the wavelength of the chopped light used for spectroscopic measurements coincides with a photoabsorption spectral peak of the defect. Another scheme using a continuous light of variable wavelength was applied to midgap centers, assigned as arsenic antisite defects, densely populated in low-temperature-grown GaAs epifilms. Experiments at 90K revealed that light illumination causes reversible transformation of the individual defects to a metastable state with an excitation spectrum very close to one observed for the photo-quenching effect of EL2 centers in bulk GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hida, A., Mera, Y. and Maeda, K.; Physica B 308-310, 738 (2001)CrossRefGoogle Scholar
2. Hida, A., Mera, Y., and Maeda, K.; Appl. Phys. Lett. 78, 3190 (2001)CrossRefGoogle Scholar
3. Hida, A., Mera, Y., and Maeda, K.; Appl. Phys. Lett. 78, 3029 (2001)CrossRefGoogle Scholar
4. Feenstra, R. M. at al., Phys. Rev. Lett. 71, 1176 (1993)CrossRefGoogle Scholar
5. Capaz, R. B. et al., Phys. Rev. Lett. 75, 1811 (1995); S. B. Zhang, Phys. Rev. B 60, 4462 (1999)CrossRefGoogle Scholar
6. Fisher, D. W., Appl. Phys. Lett. 50, 1751 (1987)CrossRefGoogle Scholar
7. Grandidier, B. et al., Appl. Phys. Lett. 76, 3142 (2000)CrossRefGoogle Scholar
8.for review, see: Kaminska, M. and Weber, E. R. in Semiconductors and Semimetals vol. 38, edited by Weber, E. R., (Academic Press, Boston, 1993) p. 5989.Google Scholar
9. Pollak, F. H. and Cardona, M., Phys. Rev. 142, 530 (1966)Google Scholar
10. Frova, A. et al., Phys. Rev. 145, 575 (1966)CrossRefGoogle Scholar
11. Hida, A., Mera, Y. and Maeda, K.; Physica B 308-310, 1145 (2001)CrossRefGoogle Scholar
12.for review, see: Grafström, S., J. Appl. Phys. 91, 1717 (2002)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

STM Nanospectroscopic Study of Defects in Semiconductors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

STM Nanospectroscopic Study of Defects in Semiconductors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

STM Nanospectroscopic Study of Defects in Semiconductors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *