Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-pxrsg Total loading time: 0.268 Render date: 2021-07-25T21:32:38.423Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

STM Characterization of Low Dimensional Surface Electronic Properties of Undoped Diamond in Buffer Solutions

Published online by Cambridge University Press:  01 February 2011

Nianjun Yang
Affiliation:
nianjun-yang@aist.go.jp, AIST, DRC, Central 2, 1-1-1 Umezono, Tsukuba, 305-8568, Japan, +81-29-861-4836
Hiroshi Uetsuka
Affiliation:
hiroshi.uetsuka@aist.go.jp, Diamond Research Center/AIST, Tsukuba, 305-8568, Japan
Takatoshi Yamada
Affiliation:
Takatoshi-Yamada@aist.go.jp, Diamond Research Center/AIST, Tsukuba, 305-8568, Japan
Christoph E. Nebel
Affiliation:
christoph.nebel@aist.go.jp, Diamond Research Center/AIST, Tsukuba, 305-8568, Japan
Get access

Abstract

Diamond is a promising semiconductor which shows some unique surface electronic features if grown optimized with low bulk and surface defect densities. The appearance of a highly conducting surface layer if immersed into electrolyte solution is maybe the most striking feature. Scanning tunneling microscopy experiments on diamond in electrolyte solutions are applied to determine the electronic properties governing these transition. These experiments reveal the formation of unoccupied quantized electronic states in the valence band close to the surface. A two-dimensional density of state distribution with three levels from light-, heavy-, and split-off-band holes is detected. Removal of the electrolyte causes a reversible transition into the insulating state and vice versa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Koizumi, S.; Kamo, M.; Ozaki, O.; Inuzaka, T.; Appl. Phys. Lett. 71, 10651067 (1997).CrossRefGoogle Scholar
2. Ekimov, E.A.; Sidorov, V.A.; Bauer, E.D.; Melnik, N.N.; Curro, N.J.; Thompson, J.D.; Stishov, S.M.; Nature 428, 542545 (2004).10.1038/nature02449CrossRefGoogle Scholar
3. Chidress, L.; Dutt, G.M.V.; Taylor, J.M.; Zibrov, A.S.; Jelezo, F.; Wrachtrup, J.; Hemmer, P.R.; Lukin, M.D.; Science 314, 281295 (2006).10.1126/science.1131871CrossRefGoogle Scholar
4. Yang, W.S., Auciello, O., Butler, J.E., Cai, W., Carlisle, J.A Gerbi, J., Gruen, D.M., Knickerbocker, T., Lasseter, T.L., Russell, J.N., Smith, L.M., Hamers, R.J.; Nature Materials 1 (4): 253257 (2002).CrossRefGoogle Scholar
5. Koizumi, S., Watanabe, K., Hasegawa, F., Kanda, H.; Science 292 (5523), 18991901 (2001).CrossRefGoogle Scholar
6. Cui, J.B.; Ristein, J.; ley, L.; Phys. Rev. Let. 81 (2), 429432 (1998).CrossRefGoogle Scholar
7. Landstrass, M.I.; Ravi, K.V.; Appl. Phys. Lett. 55, 975977 (1989)CrossRefGoogle Scholar
8. Maier, F.; Riedel, M.; Mantel, B.; Ristein, J. Ley, L.; Phys. Rev. Let. 85, 34723475 (2000).10.1103/PhysRevLett.85.3472CrossRefGoogle Scholar
9. Shin, D.; Watanabe, H.; Nebel, C.E.; J. Am. Chem. Soc. 127, 1123611237 (2005).CrossRefGoogle Scholar
10. Nebel, C.E.; Rezek, B.; Shin, D.; Watanabe, H.; phys. stat. sol. (a) 32733298 (2006).CrossRefGoogle Scholar
11. Nebel, C.E.; Rezek, B.; Zrenner, A.; phys. stat. sol (a) 11, 24322438 (2004).CrossRefGoogle Scholar
12 Nebel, C.E.; Rezek, B.; Zrenner, A.; Diam. Rel. Mat. 13, 20312036 (2004).CrossRefGoogle Scholar
13. Gan, L.; Baskin, E.; Saguy, C.; Kalish, R.; PRL 96, 196808 (2006).10.1103/PhysRevLett.96.196808CrossRefGoogle Scholar
14. Nützenadel, C.; Küttel, O.M.; Diederich, L.; Maillard-Schaller, E.; Groening, O.; Schlapbach, L.; Surface Science 369, L111–L116 (1996).CrossRefGoogle Scholar
15. Bobrov, K.; Mayne, A. J.; Dujardin, G.; Nature 413, 616619 (2001).10.1038/35098053CrossRefGoogle Scholar
16. Watanabe, H., Takeuchi, D.; Yamanaka, S.; Okushi, H.; Kajimura, K.; Sekiguchi, T.; Diam. Rel. Mat. 8, 12721276 (1999).CrossRefGoogle Scholar
17. Rezek, B.; Garrido, J.A.; Stutzmann, M.; Nebel, C.E.; Snidero, E.; Bergonzo, P.; phys. stat. sol. (a) 193, 523528 (2002).3.0.CO;2-T>CrossRefGoogle Scholar
18. Tao, N.J.; Li, C.Z.; He, H.X.; J. Electroanalytical Chemistry 492, 8193 (2000).10.1016/S0022-0728(00)00295-3CrossRefGoogle Scholar
19. Rezek, B; Sauerer, C.; Nebel, C.E.; Stutzmann, M.; Ristein, J.; Ley, L.; Snidero, E.; Bergonzo, P.; Appl. Phys. Lett. 82 (14), 22662268 (2003).10.1063/1.1564293CrossRefGoogle Scholar
20. Rezek, B.; Shin, D.; Watanabe, H.; Nebel, C.E.; Sensors and Actuators B 122, 596599 (2007).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

STM Characterization of Low Dimensional Surface Electronic Properties of Undoped Diamond in Buffer Solutions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

STM Characterization of Low Dimensional Surface Electronic Properties of Undoped Diamond in Buffer Solutions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

STM Characterization of Low Dimensional Surface Electronic Properties of Undoped Diamond in Buffer Solutions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *