Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-qgndx Total loading time: 0.207 Render date: 2021-09-23T18:49:30.369Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Spin-Orbit Coupling Versus Exchange Interaction in Actinide Metals

Published online by Cambridge University Press:  01 February 2011

Gerrit van der Laan
Affiliation:
g.vanderlaan@dl.ac.uk, Diamond Light Source, Synchrotron Radiation, RAL, Didcot, OX11 0DE, United Kingdom
Kevin Thomas Moore
Affiliation:
moore78@llnl.gov, Lawrence Livermore National Laboratory, Chemistry and Materials Science Directorate, Livermore, CA, 94550, United States
Get access

Abstract

The electronic structure of the actinide metals, Th, U, Np, Pu, Am, and Cm, is investigated using electron energy-loss spectroscopy (EELS) in a transmission electron microscope, together with many-electron spectral calculations. At the N 4,5 edge, sum rule analysis gives the angular part of the spin-orbit interaction per hole, showing that while light metals (Th and U) follow LS coupling, heavier metals (Pu, Am, and Cm) follow intermediate coupling of the 5f states. The intermediate coupling is near the jj limit for Pu and Am, but strongly shifted towards the LS coupling limit for Cm. At the O 4,5 edge many-electron spectral calculations show that the prepeak corresponds to a “forbidden” transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Moore, K. T. and Laan, G. van der, “Nature of the 5f states in actinide metals”, Rev. Mod. Phys., in progress (2008).10.1103/RevModPhys.81.235CrossRefGoogle Scholar
2 Laan, G. van der, Moore, K. T. Tobin, J. G. Chung, B. W. Wall, M. A. and Schwartz, A. J. Phys. Rev. Lett. 93, 097401 (2004).CrossRefGoogle Scholar
3 Moore, K. T. Laan, G. van der, Tobin, J. G. Chung, B. W. Wall, M. A. and Schwartz, A.J., Ultramicroscopy 106, 261 (2006).CrossRefGoogle Scholar
4 Moore, K. T. Wall, M. A. Schwartz, A. J. Chung, B. W. Morton, S. A. Tobin, J. G. Lazar, S. Tichelaar, F. D. Zandbergen, H. W. Söderlind, P., and Laan, G. van der, Philos. Mag. 84, 1039 (2004).CrossRefGoogle Scholar
5 Thole, B. T. and Laan, G. van der, Phys. Rev. B 38, 3158 (1988); Phys. Rev. A 38, 1943 (1988); G. van der, Laan and B.T., Thole, Phys. Rev. Lett. 60, 1977 (1988).CrossRefGoogle Scholar
6 Moore, K. T. Laan, G. van der, Wall, M. A. Schwartz, A. J. and Haire, R. G. Phys. Rev. B 76, 073105 (2007).10.1103/PhysRevB.76.073105CrossRefGoogle Scholar
7 Moore, K. T. Laan, G. van der, Haire, R. G. Wall, M. A. Schwartz, A. J. and Söderlind, P., Phys. Rev. Lett. 98, 236402 (2007).10.1103/PhysRevLett.98.236402CrossRefGoogle Scholar
8 Moore, K. T. Wall, M. A. Schwarz, A. J. Chang, B. W. Shuh, D. K. Schulze, R. K. and Tobin, J. G. Phys. Rev. Lett. 90, 196404 (2003)CrossRefGoogle Scholar
9 Moore, K. T. and Laan, G. van der, Ultramicroscopy 107, 1201 (2007).CrossRefGoogle Scholar
10 Butterfield, M. Moore, K. T. Laan, G. van der, Wall, M. A. and Haire, R. G. Phys. Rev. B 77, 113109 (2008).CrossRefGoogle Scholar
11 Laan, G. van der, Lect. Notes Phys. 697, 143 (2006).CrossRefGoogle Scholar
12 Thole, B. T. Laan, G. van der, Fuggle, J. C. Sawatzky, G. A. Karnatak, R. C. and Esteva, J. M., Phys. Rev. B 32, 5107 (1985).CrossRefGoogle Scholar
13 Starke, K. Navas, E. Arenholz, E. Hu, Z. Baumgarten, L. Laan, G. van der, Chen, C. T. and Kaindl, G. Phys. Rev. B 55, 2672 (1997).CrossRefGoogle Scholar
14 Cowan, R. D. J. Opt. Soc. Am. 58, 808 (1968).CrossRefGoogle Scholar
15 Cowan, R. D.The Theory of Atomic Structure and Spectra” (University of California Press, Berkeley, CA, 1981).Google Scholar
16 Laan, G. van der and Thole, B.T., Phys. Rev. B 53, 14458 (1996).CrossRefGoogle Scholar
17 Laan, G. van der, Phys. Rev. B 57, 112 (1998).CrossRefGoogle Scholar
18 Laan, G. van der and Thole, B. T. Phys. Rev. B 43, 13401 (1991).CrossRefGoogle Scholar
19 Laan, G. van der and Kirkman, I. W. J. Phys.: Condens. Matter 4, 4189 (1992).Google Scholar
20 Laan, G. van der, Thole, B. T. Sawatzky, G. A. Fuggle, J. C. Karnatak, R. C. Esteva, J. M. and Lengeler, B. J. Phys. C: Solid State Phys. 19, 817 (1986).CrossRefGoogle Scholar
21 Heathman, S. Haire, R. G. Bihan, T. Le, Lindbaum, A. Idiri, M. Normile, P. Li, S. Ahuja, R. Johansson, B. and Lander, G. H. Science 309, 110 (2005).CrossRefGoogle Scholar
22 Laan, G. van der, unpublished.Google Scholar
23 Gouder, T. Havela, L. Wastin, F. and Rebizant, J. Europhys. Lett. 55, 705 (2001).CrossRefGoogle Scholar
24 Havela, L. Gouder, T. Wastin, F. and Rebizant, J. Phys. Rev. B 65, 235118 (2002).CrossRefGoogle Scholar
25 Shim, J. H. Haule, K. and Kotliar, G. Nature (London) 446, 513 (2007).CrossRefGoogle Scholar
26 Shick, A. B. Kolorenc, J. Havela, L. Drchal, V. and Gouder, T. Europhys. Lett. 77, 17003 (2007).CrossRefGoogle Scholar
27 Lashley, J. C. Lawson, A. McQueeney, R. J. and Lander, G. H. Phys. Rev. B 72, 054416 (2005).CrossRefGoogle Scholar
28 McCall, S. K. Fluss, M. J. Chung, B. W. McElfresh, M. W. Jackson, D. D. and Chapline, G. F., Proc. Natl. Acad. Sci. U.S.A. 103, 17179 (2006).CrossRefGoogle Scholar
29 Ogasawara, H. Kotani, A. and Thole, B. T. Phys. Rev. B 44, 2169 (1991).10.1103/PhysRevB.44.2169CrossRefGoogle Scholar
30 Laan, G. van der, J. Phys.: Condens. Matter 3, 7443 (1991).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spin-Orbit Coupling Versus Exchange Interaction in Actinide Metals
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spin-Orbit Coupling Versus Exchange Interaction in Actinide Metals
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spin-Orbit Coupling Versus Exchange Interaction in Actinide Metals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *