Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-18T21:59:30.918Z Has data issue: false hasContentIssue false

Spectroscopic and Ion Probe Characterization of the Transport Process Following Laser Ablation of Yba2Cu3Ox

Published online by Cambridge University Press:  16 February 2011

David B. Geohegan
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
Douglas N. Mashburn
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
Get access


Spatial and temporal measurements of the optical absorption, optical emission and ion probe response in the ablation plume formed following pulsed 248 nm irradiation of Y1Ba2Cu3Ox are reported over laser energy densities from near threshold into the film growth regime. Time of flight absorbance-velocity profiles in vacuum indicate the formation and acceleration of a plasma front, with ions leading neutrals on the edge of the expanding plume. Ion probe screening measurements show that the laser plume is a well-shielded plasma with Debye lengths <10 μm at film deposition distances. Velocity distributions and estimates of ground state Ba+, Ba, Y+, and Y densities indicate that the populations of the ions outnumber those of the neutrals at high energy densities in vacuum. Measurements of the slowing of the plasma front and attenuation of the total charge reaching the substrate are reported for laser ablation in background pressures of oxygen. Absorption by ground state YO and BaO in the region close to the pellet indicates oxide densities ˜5 × 1013 cm−3 close to the pellet.

Research Article
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1. Zheng, J. P., Ying, Q. Y., Witanachchi, S., Huang, Z. Q., Shaw, D. T., and Kwok, H. S., Appl. Phys. Lett. 54, 954 (1989).Google Scholar
2. Saenger, K. L., J. Appl. Phys. 66, 4435 (1989).Google Scholar
3. Girault, C., Damiani, D., Aubreton, J., and Catherinot, A., Appl. Phys. Lett. 55, 182 (1989).Google Scholar
4. Geohegan, D. B. and Mashburn, D. N., Appl. Phys. Lett. 55, 2345 (1989).Google Scholar
5. Geohegan, D. B. and Mashburn, D. N., Third Annual Conference on Superconductivity and Applications, Plenum Press, New York (in press).Google Scholar
6. Akhsakhalyan, A. D., Bityurin, Yu A., Gaponov, S. V., Gudkov, A. A., and Luchin, V. I., Sov. Phys. Tech. Phys. 27, 969 (1982).Google Scholar
7. Demtröder, W. and Jantz, W., Plasma Physics 12, 691 (1970).Google Scholar
8. Gutfeld, R. J. von and Dreyfus, R. W., Appl. Phys. Lett. 54, 1212 (1989).Google Scholar
9. Goel, S. K., Gupta, P. D., and Bhawalkar, D. D., J. Appl. Phys. 53, 2971 (1982).Google Scholar
10. Dyer, P. E., Appl. Phys. Lett. 55, 1630 (1989).Google Scholar
11. Dyer, P. E., Greenough, R. D., Issa, A., and Key, P. H., Appl. Phys. Lett. 53, 534 (1988).Google Scholar
12. Mashburn, D. N. and Geohegan, D. B., in Symposium on Microelectronic Integrated Processing: Growth, Monitoring, and Control, The Society for Photo-Optical Engineers (SPIE), Bellingham, Washington (in press).Google Scholar
13. Kelly, Roger and Dreyfus, R. W., Surf. Sci. 198, 263 (1988).Google Scholar
15. Puell, H., Z. Naturforsch. 25a, 1807 (1970).Google Scholar
14. Bykovskii, Yu A., Degtyarenko, N. N., Elesin, V. F., Kondrashov, V. E., and Lovetskii, E. E., Soy. Phys. Tech. Phys. 18, 1597 (1974).Google Scholar
16. Becker, C. H. and Pallix, J. B., J. Appl. Phys. 64, 5152 (1988).Google Scholar
17. Eryu, O., Murakami, K., and Masuda, K., Appl. Phys. Lett. 54, 2716 (1989).Google Scholar
18. Liu, K. and Parson, J. M., J. Chem. Phys. 67, 1814 (1977).Google Scholar