Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-13T10:43:08.512Z Has data issue: false hasContentIssue false

Spectrometric Characterization of Purified C60 and C70

Published online by Cambridge University Press:  28 February 2011

Keith R. Lykke
Affiliation:
Materials Science/Chemistry Divisions, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439
Michael J. Pellin
Affiliation:
Materials Science/Chemistry Divisions, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439
Peter Wurz
Affiliation:
Materials Science/Chemistry Divisions, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439
Dieter M. Gruen
Affiliation:
Materials Science/Chemistry Divisions, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439
Jerry E. Hunt
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439
Michael R. Wasielewski
Affiliation:
Chemistry Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439
Get access

Abstract

C60 and C70 were synthesized and purified according to published procedures. Both nanosecond and picosecond laser desorption from coated substrates gave copious positive and negative ions. Mass spectra (TOF and FTMS) with excellent signal to noise, showing only the C60 and C70 mass peaks, have been observed. Well-resolved isotopic structure was seen in the FTMS spectra in agreement with the natural abundance of carbon. Laser desorption and multiphoton ionization/photodissociation of the neutral species, as well as electronic absorption, FTIR, and fluorescence spectra, have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rohlfing, E. A., Cox, D. M., Kaldor, A., J. Chem. Phys. 81, 33223330 (1984).CrossRefGoogle Scholar
2. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., Smalley, R. E., Nature 318, 162163 (1985).CrossRefGoogle Scholar
3. Krätschmer, W., Fostiropoulos, K., Huffman, D. R., Chem. Phys. Lett. 170, 167170 (1990).CrossRefGoogle Scholar
4. Krätschmer, W., Lamb, L. D., Fostiropoulos, K., Huffman, D. R., Nature 347, 354358 (1990).CrossRefGoogle Scholar
5. Taylor, R., Hare, J. P., Abdul-Sada, A. K., Kroto, H. W., J. Chem. Soc., Chem. Commun. 1990, 14231425 (1990).CrossRefGoogle Scholar
6. Ajie, H., Alvarez, M. M., Anz, S. J., Beck, R. D., Diederich, F., Fostiropoulos, K., Huffman, D. R., Krätschmer, W., Rubin, Y., Schriver, K. E., Sensharma, D., and Whetten, R. L., J. Phys. Chem. 94, 86308633 (1990).CrossRefGoogle Scholar
7. Radi, P. P., Bunn, T. L., Kemper, P. R., Molchan, M. E., Bowers, M. T., J. Chem. Phys. 88, 28092814 (1988).CrossRefGoogle Scholar
8. Haufler, R. E., Conceicao, J., Chibante, L. P. F., Chai, Y., Byrne, N. E., Flanagan, S., Haley, M. M., O’Brien, S. C., Pan, C., Xiao, Z., Billups, W. E., Ciufolini, M. A., Hauge, R. H., Margrave, J. L., Wilson, L. J., Curl, R. F., and Smalley, R. E., J. Phys. Chem. 94, 86348636 (1990).CrossRefGoogle Scholar
9. Baum, R. M., C&E News October 29, 1990, 2225 (1990).Google Scholar
10. Krätschmer, W., Sorg, N., Huffman, D. R., Surf. Sci. 156, 814821 (1985).CrossRefGoogle Scholar
11. Hunt, J. E., Lykke, K. R., Pellin, M. J., in Methods and Mechanisms for Producing Ions from Large Molecules (Plenum Press, Minaki, Canada, 1991).Google Scholar
12. Curl, R. F., Smalley, R. E., Science 242, 10171022 (1988).CrossRefGoogle Scholar
13. O’Brien, S. C., Heath, J. R., Curl, R. F., Smalley, R. E., J. Chem. Phys. 88, 220230 (1988).CrossRefGoogle Scholar
14. Smalley, R. E., in Atomic and Molecular Clusters, Bernstein, E. R., Ed. (Elsevier Science Publishers, 1990), pp. 168.Google Scholar
15. Weiss, F. D., Elkind, J. L., O’Brien, S. C., Curl, R. F., Smalley, R. E., J. Am. Chem. Soc. 110, 44644465 (1988).CrossRefGoogle Scholar