Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-21T16:50:28.419Z Has data issue: false hasContentIssue false

Spatially Resolved Study of Magnesium Incorporation in Zn1-xMgxO Nanostructures

Published online by Cambridge University Press:  01 February 2011

Martin Schirra
Affiliation:
martin.schirra@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Albert-Einstein-Allee 45, Ulm, D-89069, Germany
Anton Reiser
Affiliation:
anton.reiser@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Günther Michael Prinz
Affiliation:
guenther.prinz@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Raoul Schneider
Affiliation:
raoul.schneider@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Rolf Sauer
Affiliation:
rolf.sauer@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Klaus Thonke
Affiliation:
klaus.thonke@uni-ulm.de, Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Get access

Abstract

We report on the growth of Zn1-xMgxO nanopillars on a-plane sapphire by the vapor liquid solid (VLS) process. The as-grown nano structures are characterized by scanning electron microscopy (SEM), spatially resolved cathodoluminescence (SEM-CL), and integral photoluminescence (PL). The investigation with SEM applying different secondary electron detectors confirms that the pillars are grown by the VLS process. Integral PL experiments reveal an average value of 7% Mg incorporated in the Zn1-xMgxO nano structures. Both ZnO- and Zn1-xMgxO– related luminescence features are observed. The direct incorpoaration of Mg into single pillars is demonstrated with SEM-CL, and different Mg concentrations are found. First annealing experiments on the sample at 850°C lead to an almost complete breakdown of the ZnO- and Zn1-xMgxO– related near band-edge luminescence, whereas the structural properties of the sample morpholgy remain nearly unchanged.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998)Google Scholar
2. Kukreja, L., oral presentation at the “4th International Workshop on ZnO and Related Materials”, Giessen, Germany (2006)Google Scholar
3. Qian, F., Li, Y., Gradečak, S., Wang, D., Barrelet, C.J., and Lieber, C.M., Nano Letters 4, 1975 (2004)Google Scholar
4. Ristić, J., Calleja, E., Trampert, A., Fernández-Garrido, S., Rivera, C., Jahn, U., and Ploog, K.H., Phys. Rev. Lett. 94, 146102 (2005)Google Scholar
5. Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., Adv. Mat. 13, 113 (2001)Google Scholar
6. Reiser, A., Ladenburger, A., Prinz, G.M., Schirra, M., Feneberg, M., Langlois, A., Enchelmaier, R., Li, Y., Sauer, R., and Thonke, K., J. Appl. Phys. (2007), acceptedGoogle Scholar
7. Schirra, M., Reiser, A., Prinz, G.M., Ladenburger, A., Thonke, K., and Sauer, R., (submitted to J. Appl. Phys.)Google Scholar
8. Kling, R., Kirchner, C., Gruber, T., Reuss, F. and Waag, A., Nanotechnology 15, 1043 (2004)Google Scholar