Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T01:51:19.174Z Has data issue: false hasContentIssue false

Spatial and Temporal Analysis of Microplasma Light Emission

Published online by Cambridge University Press:  21 May 2012

M. Blajan
Affiliation:
Innovation and Joint Research Center, Shizuoka University, 3-5-1 Jyohoku, Nakaku, 432-8561 Hamamatsu, Japan
H. Fukunaga
Affiliation:
Innovation and Joint Research Center, Shizuoka University, 3-5-1 Jyohoku, Nakaku, 432-8561 Hamamatsu, Japan
K. Shimizu
Affiliation:
Innovation and Joint Research Center, Shizuoka University, 3-5-1 Jyohoku, Nakaku, 432-8561 Hamamatsu, Japan
Get access

Abstract

Emission spectroscopy analysis was used to study the microplasma phenomena. The microplasma discharge in Ar, N2/Ar and O2/Ar was analyzed in the discharge gap area and spatial distribution of active species was measured also outside the electrodes. Spatial and temporal distribution showed the propagation of light emission from anode towards cathode within a time period of 190 ns. The measurement of OH peak at 308.9 nm proved the existence of this excited species 1 mm outside the electrodes area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shimizu, K., Yamada, M., Kanamori, M., Blajan, M., IEEE Trans. Ind. Appl., 46, 641 (2010).Google Scholar
2. Blajan, M., Umeda, A., Muramatsu, S., and Shimizu, K., IEEE Trans. Ind. Appl., 47, 1100 (2011).Google Scholar
3. Shimizu, K., Blajan, M., and Kuwabara, T., IEEE Trans. Ind. Appl., 47, 2351 (2011).Google Scholar
4. Shimizu, K., Umeda, A., Blajan, M., Jpn. J. Appl. Phys. 50, 08KA03 (2011).10.7567/JJAP.50.08KA03Google Scholar
5. Shimizu, K., Umeda, A., Muramatsu, S., Blajan, M., IEEJ Transaction on Fundamentals and Materials, 130, 858 (2010).10.1541/ieejfms.130.858Google Scholar
6. Iza, F., Kim, G. J., Lee, S. M., Lee, J. K., Walsh, J. M., Zhang, Y. T., Kong, M. G., Plasma Process. Polym., 5, 322 (2008).Google Scholar
7. Shimizu, K., Ishii, T., and Blajan, M., IEEE Trans. Ind. Appl., 46, 1125 (2010).10.1109/TIA.2010.2044968Google Scholar
8. Machala, J., Janda, M., Hensel, K., Jedlovsky, I., Lestinska, L., Foltin, V., Martisovits, V., and Morvova, M., J.Mol. Spectrosc., 243, 194 (2007).Google Scholar
9. Srivastava, N. and Wang, C., IEEE Trans. Plasma Sci., 39, 918 (2011).Google Scholar
10. Kregar, Z., Krstulovic, N., Milosevic, S., Kenda, K., Cvelbar, U., and Mozeti, M., IEEE Trans. Plasma Sci., 36, 1368 (2008).Google Scholar
11. Kregar, Z., Biscan, M., Milosevic, S., and Vesel, A., IEEE Trans. Plasma Sci., 39, 1239 (2011).Google Scholar
12. Lofthus, A. and Krupenie, P. H., J. Phys. Chem. Ref. Data, 6, 113 (1977).10.1063/1.555546Google Scholar
13. Liu, F., Wang, W., Wang, S., Zheng, W., and Wang, Y., J. Electrostat., 65, 445 (2007).10.1016/j.elstat.2006.10.007Google Scholar
14. Göran Norlén, , Physica Scripta, 8, 249 (1973).Google Scholar
15. Hoder, T., Sira, M., Kozlov, K. V., and Wagner, H. E., J. Phys. D: Appl. Phys., 41, 035212 (2008).Google Scholar
16. Kozlov, K. V. and Wagner, H.-E., Contrib. Plasma Phys., 47, 26 (2007).Google Scholar