Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-vnkdd Total loading time: 0.391 Render date: 2021-05-06T23:42:53.683Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Sol-Gel Synthesis of Metal Oxide Clusters and Colloids

Published online by Cambridge University Press:  15 February 2011

J. Livage
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France
C. Sanchez
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France
P. Toledano
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France
Get access

Abstract

The hydrolysis and condensation of metal alkoxides M(OR)z allows the formation of oxopolymers or oxide colloids under mild conditions in solution. The molecular design of these precursors provides a chemical control over the formation of condensed phases. This can be conveniently performed via the chemical modification of alkoxides by nucleophilic species such as carboxylates or β-diketones. Condensation can be tailored with two chemical parameters; the hydrolysis ratio which leads to more condensed species and the amount of complexation which prevents condensation. Molecular clusters or colloidal particles can be obtained instead of precipitates. Moreover, non hydrolyzable complexing organic ligands lead to the formation of hybrid materials in which organic and inorganic moities are chemically bonded. These hybrid clusters and colloids are important starting points for producing solids and films with novel physical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Brinker, C. J., Scherer, G. W., Sol-2el Science. (Academic press, New York, 1989).Google Scholar
2. Klein, L., Sol-gel technology for thin films. fibers, preforms, electronic and specialty shapes, (Noyes Pub., Park Ridge USA, 1988).Google Scholar
3. Livage, J., Henry, M., Sanchez, C., Progress in Solid State Chem. 18, 259 (1988).CrossRefGoogle Scholar
4. Schmidt, H., J. Non-Cryst. Solids, 73, 681 (1985).CrossRefGoogle Scholar
5. Brinker, C. J., Scherer, G. W., J. Non-Cryst. Solids, 70, 301 (1985).CrossRefGoogle Scholar
6. Stöber, W., Fink, A., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
7. Bradley, D. C., Mehrotra, R. C., Gaur, D. P., Metal Alkoxides. (Academic Press, London, 1978)Google Scholar
8. Babonneau, F., Doeuff, S., Leaustic, A., Sanchez, C., Cartier, C., Verdaguer, M., Inorg. Chem. 27, 3166 (1988).CrossRefGoogle Scholar
9. Barringer, E. A., Bowen, H. K., J. Am. Ceram. Soc. 65, C199 (1982).CrossRefGoogle Scholar
10. Barringer, E. A., Bowen, H. K., Langmuir, 1, 414 (1985).CrossRefGoogle Scholar
11. Caulton, K. G., Hubert-Pfalzgraf, L. G., Chem. Rev. 90, 969 (1990).CrossRefGoogle Scholar
12. Hubert-Pfalzgraf, L. G., Papiernik, R., Massiani, M. C., Septe, B., Mat. Res. Soc. Symp. Proc. “Better ceramics through Chemistry IV” 180, 393 (1990).CrossRefGoogle Scholar
13. Hubert-Pfalzgraf, L. G., Poncelet, O., Daran, J. C., Mat. Res. Soc. Symp. Proc., “Better Ceramics through Chemistry IV” 180, 73 (1990).CrossRefGoogle Scholar
14. Kessler, V. G., Turova, N. Y., Yanovsky, A. I., Belokon, A. I., Struchkov, Y. T. (private communication).Google Scholar
15. Schmid, R., Mosset, A., Galy, J., J. Chem. Soc. Dalton Trans. 1999 (1991).Google Scholar
16. Vaartstra, B. A., Huffman, J. C., Gradeff, P. S., Hubert-Pfalzgraf, L. G., Daran, J. C., Parraud, S., Yunlu, K., Caulton, K. G., Inorg. Chem. 22, 3126 (1990).CrossRefGoogle Scholar
17. Toledano, P., Ribot, F., Sanchez, C., Acta Cryst. C 46, 1419 (1990).CrossRefGoogle Scholar
18. Sanchez, C., Livage, J., New J. Chem. 14, 513 (1990).Google Scholar
19. Kundu, D., Ganguli, D., J. Mater. Sci. Lett. 5, 293 (1986).CrossRefGoogle Scholar
20. Nabavi, M., Doeuff, S., Sanchez, C., Livage, J., J. Non-Cryst. Solids, 121, 31 (1990).CrossRefGoogle Scholar
21. Poncelet, O., Hubert-Pfalzgraf, L. G., Daran, J. C., Astier, R., J. Chem. Com., 1846 (1989).CrossRefGoogle Scholar
22. Hubert-Pfalzgraf, L. G., Khorkh, N. El, Daran, J. C., Polyhedron, 11, 59 (1992).CrossRefGoogle Scholar
23. Eichorst, D. J., Payne, D. A., Wilson, S. R., Howard, K. E., Inorg. Chem. 29, 1458 (1990).CrossRefGoogle Scholar
24. Doeuff, S., Henry, M., Sanchez, C., Livage, J., J. Non-Cryst. Solids, 89, 206 (1987).CrossRefGoogle Scholar
25. Mehrotra, R. C., Bohra, R., Gaur, D. P., Metal β-diketonates and allied derivatives, (Academic Press, London, 1978).Google Scholar
26. Leaustic, A., Babonneau, F., Livage, J., Chem. of Mater. 1, 240 1989).CrossRefGoogle Scholar
27. Watenpaugh, K., Caughlan, C. N., Chem. Com. 76 (1967).CrossRefGoogle Scholar
28. Day, V. W., Eberspacher, T. A., Klemperer, W. G., Woo-Park, C., Rosenberg, F. S., in Chemical processing of advanced materials, edited by Hench, L. L. and J. West (J. Wiley Pub., New York) (in press).Google Scholar
29. Doeuff, S., Dromzee, Y., Sanchez, C., C. R. Acad. Sci. Fr. 308, 1409 (1989).Google Scholar
30. Smith, G. D., Caughlan, C. N., Campbell, J. A., Inorg. Chem. 11, 2989 (1972).CrossRefGoogle Scholar
31. Toledano, P., In, M., Sanchez, C., C. R. Acad. Sci. Fr. 313, 1247 (1991).Google Scholar
32. Toledano, P., In, M., Sanchez, C., C. R. Acad. Sci. Fr. 311 (1990) 1161.Google Scholar
33. Toledano, P. (private communication).Google Scholar
34. Rinn, G., Schmidt, H., Ceramic Transactions, Messing, G. L., Fuller, E. R., Hansner, H. Eds., Am. Ceram. Soc. Pub. 1 (1988) 23.Google Scholar
35. Toledano, P., Ribot, F., Sanchez, C., C. R. Acad. Sci. Fr. 311, 1315 (1990).Google Scholar
36. Ribot, F., Toledano, P., Sanchez, C., Chem. Mater. 3, 759 (1991).CrossRefGoogle Scholar
37. Livage, J., Barboux, P., Nabavi, M., Judeinstein, P., Mat. Res. Soc. Symp. Proc. “Solid State Ionics”, 135, 131 (1989).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sol-Gel Synthesis of Metal Oxide Clusters and Colloids
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Sol-Gel Synthesis of Metal Oxide Clusters and Colloids
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Sol-Gel Synthesis of Metal Oxide Clusters and Colloids
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *