Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-tcbk7 Total loading time: 0.943 Render date: 2021-09-19T06:04:39.853Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Sol-gel Encapsulated Gold-Silica Nanoshell-based SERS Sensors

Published online by Cambridge University Press:  01 February 2011

Yu-Jen Lin
Affiliation:
Illinois Institute of Technology, BCPS, 3101 S. Dearborn, LS 182, Chicago, IL, 60616, United States, 312-567-8922
Pankti Gala
Affiliation:
pgala@iit.edu, Illinois Institute of Technology, Biomedical Engineering, Chicago, IL, 60616, United States
Sandra Whaley Bishnoi
Affiliation:
bishnoi@iit.edu, Illinois Institute of Technology, BCPS, 3101 S. Dearborn St. LS 182, Chicago, IL, 60616, United States
Get access

Abstract

We have used sol-gel methods to immobilize gold-silica nanoshells to create robust SERS based sensors. Using a protocol commonly used to immobilize proteins, biologically friendly SERS sensors for the study of gold binding peptides and proteins have been created. Specifically, by combining tetramethyl orthosilicate (TMOS), methyltrimethoxysilicate (MTMS), phosphate buffer, and gold nanoparticles we have created sol-gels with reduced fluorescence and Raman backgrounds. The resulting substrates have been tested using the Raman scattering response of 4-mercaptonbenzoic acid (4-MBA) to determine porosity and long-term stability of this SERS substrate. Multiple rinse cycles using phosphate buffer showed no significant decline in the SERS response of the substrate up to ten rinse cycles. Future studies will test the feasibility of using such substrates for the detection of biomolecules on the surface of gold.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jackson, J. B., Halas, N. J., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1793017935.Google Scholar
2. Bishnoi, S. W., Rozell, C. J., Levin, C. S., Gheith, M. K., Johnson, B. R., Johnson, D. H., and Halas, N. J., Nano Letters 2006, 6(8), 16871692.CrossRefGoogle Scholar
3. Kim, S., Kim, Y., Kim, P., Ha, J., Kim, K., Sohn, M., Yoo, J.-S., Lee, J., Kwon, J.-A., and Lee, K. N.. Anal. Chem., 2006, 78(21), 73927396.CrossRefGoogle Scholar
4. Oldenburg, S.J., Averitt, R.D., Westcott, S.L., and Halas, N.J., Chem. Phys. Letters, 1998, 288, 243247.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sol-gel Encapsulated Gold-Silica Nanoshell-based SERS Sensors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Sol-gel Encapsulated Gold-Silica Nanoshell-based SERS Sensors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Sol-gel Encapsulated Gold-Silica Nanoshell-based SERS Sensors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *