Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 0.244 Render date: 2021-12-07T01:16:02.972Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A Soft Lithographic Approach to the Fabrication of Single Crystalline Silicon Nanostructures with Well-Defined Dimensions and Shapes

Published online by Cambridge University Press:  17 March 2011

Yadong Yin
Affiliation:
Department of Materials Science and Engineering
Byron Gates
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195 (USA)
Younan Xia
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195 (USA)
Get access

Abstract

A procedure was developed for large-scale fabrication of nanometer-sized structures of single crystalline silicon with well-defined dimensions and shapes. Near-field optical lithography was used to define the nanostructures in a thin film of positive-tone photoresist with an elastomeric phase mask. The nanostructures were then transferred into the underlying silicon-on-insulator (SOI) substrate through a reactive ion etching (RIE) process. With this method, we can routinely generate silicon nanostructures ∼130 nm in lateral dimension. They can be supported on the surface of a solid substrate as a patterned array, or released into a freestanding form. The lateral dimension of these silicon structures could be further reduced to as small as ∼40 nm using stress-limited oxidation at elevated temperatures. The flexibility of this approach was demonstrated by fabricating nanoscale wires, rods, rings, and interconnected triangles of silicon. Using a two-step exposure method, the silicon nanowires can be precisely “cut” into silicon nanorods with specific lengths.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Prokes, S. M., Wang, K. L., a special issue in MRS Bull., 24, 13 (1999).CrossRefGoogle Scholar
[2] Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res., 32, 435 (1999).CrossRefGoogle Scholar
[3] a)Wagner, R. S., Ellis, W. C., Appl. Phys. Lett., 4, 89 (1964). b) E. I. Givargizov, J. Vac. Sci. Technol. B, 11, 449 (1993). c) A. M. Morales, C. M. Lieber, Science, 279, 208 (1998). d) H. Z. Zhang, D. P. Yu, Y. Ding, Z. G. Bai, Q. L. Hang, S. Q. Feng, Appl. Phys. Lett., 73, 3396 (1998). e) N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, S. T. Lee, Appl. Phys. Lett., 73, 3902 (1998).CrossRefGoogle Scholar
[4] a)Lyding, J. W., Shen, T. C., Hubacek, J. S., Tucker, J. R., Abein, G. C., Appl. Phys. Lett., 64, 2010 (1994). b)A. C. F. Hoole, M. E. Welland, A. N. Broers, Semicond. Sci.Technol., 12, 116 (1997). c) A. C. Irvine, Z. A. K. Durrani, H. Ahmed, Appl. Phys. Lett., 73, 1113 (1998). d) S. Hu, A. Hamidi, S. Altmeyer, T. Koster, B. Spangenberg, H. Kurz, J. Vac. Sci. Technol. B, 16, 2822 (1998).CrossRefGoogle Scholar
[5] Xia, Y., Rogers, J. A., Paul, K. E., Whitesides, G. M., Chem. Rev., 99, 1823 (1999).CrossRefGoogle Scholar
[6] a)Rogers, J. A., Paul, K. E., Jackman, R. J., Whitesides, G. M., Appl. Phys. Lett., 70, 2658 (1997). b) J. Aizengerg, J. A. Rogers, K. E. Paul, G. M. Whitesides, Appl. Opt., 37, 2145 (1998). c) H. Schmid, H. Biebuyck, B. Michel, O. J. F. Martin, Appl. Phys. Lett., 72, 2379 (1998).CrossRefGoogle Scholar
[7] Colinge, J. P., MRS Bull., 23(12), 16 (1998).CrossRefGoogle Scholar
[8] a)Legtenberg, R., Jansen, H., Boer, M. de, Elwenspoek, M., J. Electrochem. Soc., 142, 2020 (1995). b) S. Verhaverbeke, I. Teerlinck, C. Vinckier, G. Stevens, R. Cartuyvels, M. M. Heyns, J. Electrochem. Soc., 141, 2852 (1994).CrossRefGoogle Scholar
[9] a)Kurihara, K., Iwadate, K., Namatsu, H., Nagase, M., Murase, K., J. Vac. Sci. Technol. B, 13, 2170 (1995). b) M. Gotza, M. Dutoit, M. Ilegems, J. Vac. Sci. Technol. B, 16, 582 (1998). c) J. Kedzierski, J. Bokor, C. Kisielowski, J. Vac. Sci. Technol. B, 15, 2825 (1997). d) L. Guo, P. R. Krauss, S. Y. Chou, Appl. Phys. Lett., 71, 1881 (1997).CrossRefGoogle Scholar
[10] a)Liu, H., Biegelsen, D. K., Ponce, F. A., Johnson, N. M., Pease, R. F. W., Appl. Phys. Lett., 64, 1383 (1994).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Soft Lithographic Approach to the Fabrication of Single Crystalline Silicon Nanostructures with Well-Defined Dimensions and Shapes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Soft Lithographic Approach to the Fabrication of Single Crystalline Silicon Nanostructures with Well-Defined Dimensions and Shapes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Soft Lithographic Approach to the Fabrication of Single Crystalline Silicon Nanostructures with Well-Defined Dimensions and Shapes
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *