Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-31T00:55:24.039Z Has data issue: false hasContentIssue false

Smooth Silicide Formation by Ion Beam Mixing of Ti/Si-Layers

Published online by Cambridge University Press:  28 February 2011

K. Kohlhof
Affiliation:
Institut für Festkbrperförschung Kernforschungsanlage Jülich, P.O. Box 1913, D-5170 Jülich, Fed. Rep. Germany
S. Mantl
Affiliation:
Institut für Festkbrperförschung Kernforschungsanlage Jülich, P.O. Box 1913, D-5170 Jülich, Fed. Rep. Germany
B. Stritzker
Affiliation:
Institut für Festkbrperförschung Kernforschungsanlage Jülich, P.O. Box 1913, D-5170 Jülich, Fed. Rep. Germany
Get access

Abstract

Ion beam mixing experiments of Ti-Si layers have been performed with Kr ions of 250 keV energy and doses ranging from 7 1015 to 7 1016 cm-2 at temperatures between liquid nitrogen temperature and 450°C. At substrate temperatures below 120°C no silicide formation could be detected. Only weak mixing at the Ti-Si interface is observed. At temperatures above 120°C the formation of TiSi2 could be verified by Rutherford backscattering and X-ray diffractometry. Layers of TiSi2 produced by ion beam mixing show smooth surfaces in contrast to those prepared by conventional furnace annealing. Those display rough surfaces and interfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Murarka, S. P., J. Vac. Sci. Technol. 17 (1980) 775 S. P. Murarka, Solid State Technol. (Tept. 1985) 181Google Scholar
2. Nicolet, M. A., Lau, S. S., “VLSI Electronics: Microstructure Science”, Vol.6, edited by Einspruch, N. G., Larrabee, G. B. (Academic Press, NY, 1983) p. 329 Google Scholar
3. Tsaur, B. Y., “Thin films interfaces and interactives”, edited by Baglin, J. E. E., Poate, J. M. (The Electrochemical Society, Princeton, 1980) Vol.80 2, p. 205 Google Scholar
4. Nagasawa, E., Okabayashi, H., Morimoto, M., Jap. J. Appl. Phys. 22 (1983) L 57 M. I. J. Beale, V. G. I. Deshmukh, N. G. Chew, A. G. Cullis, Physica 129 B (1985) 210CrossRefGoogle Scholar
5. Biersack, J. P., Haggmark, L. G., Nucl. Instr. Meth. 174 (1980) 257 Google Scholar
6. Walser, R. M., Bene, R. W., Appl. Phys. Lett. 28 (1976) 624 Google Scholar
7. Maex, K., Hove, L. v. d., de Keersmaecker, R. F., Thin Solid Films 140 (1986) 149 K. Maex, R. F. de Keersmaecker, M. v. Rossum, W. F. v. d. Weg, G. KrooshofNucl. Instr. Meth.(to be published )Google Scholar
8. Cheng, Y. T., Zhao, X. A., Banwell, T., Workman, T., Nicolet, M. A., Johnson, W. L., J. Appl. Phys.60 (1986) 2615 Google Scholar
9. Wang, K. L., Bacon, F., Reihl, R. F., J. Vac. Sci. Technol. 16 (1979) 130 CrossRefGoogle Scholar
10. Kohlhof, K., Diploma thesis (unpublished)Google Scholar
11. Kohlhof, K. (to be published)Google Scholar
12. Tao, K., Hewett, C. A., Lau, S. S., Buchal, Ch., Poker, D. B. Nucl. Instr. Meth.(to be published)Google Scholar