Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-09T09:48:48.275Z Has data issue: false hasContentIssue false

Small Angle Scattering and the Structure and Dynamics of Filled and Unfilled Rubbers

Published online by Cambridge University Press:  21 March 2011

Erik Geissler
Affiliation:
Laboratoire de Spectrométrie Physique, CNRS UMR 5588, Université J. Fourier de Grenoble, 38402 St Martin d'Héres cedex, France
Anne-Marie Hecht
Affiliation:
Laboratoire de Spectrométrie Physique, CNRS UMR 5588, Université J. Fourier de Grenoble, 38402 St Martin d'Héres cedex, France
Cyrille Rochas
Affiliation:
Laboratoire de Spectrométrie Physique, CNRS UMR 5588, Université J. Fourier de Grenoble, 38402 St Martin d'Héres cedex, France
Ferenc Horkay
Affiliation:
Laboratory of Integrative and Medical Biophysics, National Institutes of Health, 13 South Drive, Bethesda MD 20892, USA
Françoise Bley
Affiliation:
Laboratoire de Thermodynamique et Physico-chimie métallurgiques, CNRS UMR 4777, INPG, 38402 St Martin d'Hères cedex, France
Frédéric Livet
Affiliation:
Laboratoire de Thermodynamique et Physico-chimie métallurgiques, CNRS UMR 4777, INPG, 38402 St Martin d'Hères cedex, France
Mark Sutton
Affiliation:
Department of Physics, McGill University, Montreal, Quebec, Canada.
Get access

Abstract

Random cross-linking in rubbers produces local variations in the elasticity of the network. These variations, whose characteristic size lies in the range 1-100 nm, are revealed when the rubber is swollen in a low molecular weight solvent, owing to the competition between the osmotic pressure of the solvent and the local elastic constraints, which affects the local polymer concentration. Such concentration fluctuations can be measured by small angle X-ray or neutron scattering (SAXS or SANS) as well as by dynamic light scattering.

In filled elastomers, the filler modifies the distribution of the polymer and of the elastic constraints. Swelling these systems in a solvent in which the deuteron/proton ratio can be varied permits the different components in the scattering function of the polymer and of the filler to be separated. Observations on silica particles in a poly(dimethyl siloxane) (PDMS) rubber yield measurements not only of the surface area of the particles but also of the fraction of the surface area occupied by the polymer. Analysis of the dynamic light scattering response of these systems gives confirmation of the validity of the procedure.

Coherent X-ray scattering measurements, combined with dynamic light scattering measurements of the filled uncross-linked polymer melts in the absence of solvent reveal that the structural relaxation process that follows an external mechanical perturbation is a diffusioncontrolled process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gennes, P.G. de, Scaling Concepts in Polymer Physics, Cornell, Ithaca 1979.Google Scholar
2. Higgins, J.S. and Benoît, H.C., Polymers and Neutron Scattering, Oxford, 1994.Google Scholar
3. A Computing Guide for Small Angle Neutron Scattering Experiments, Ghosh, R.E., Egelhaaf, S.U. and Rennie, A.R., ILL June 2000.Google Scholar
4.NIST Cold Neutron Research Facility, NG3 and NG7 30 meter SANS Instruments Data Acquisition Manual, January 1999.Google Scholar
5. Lindner, P., Leclercq, F. and Damay, P., Physica B, 291, 152 (2000).Google Scholar
6. Cipelletti, L. and Weitz, D.A., Rev. Sci. Inst. 70, 3214 (1999).Google Scholar
7. Tanaka, T., Hocker, L.O. and Benedek, G.B., J. Chem. Phys. 59, 5151 (1973).Google Scholar
8. Hecht, A.M., Geissler, E. and Horkay, F., Phys. Rev. E 59, 1976 (1999).Google Scholar
9. Porod, G. in Small Angle X-ray Scattering eds Glatter, O. and Kratky, O., Academic Press 1985.Google Scholar
10. Grest, G.S., Kremer, K. and Witten, T.A., Macromolecules 20, 1376 (1987).Google Scholar
11. Sutton, M., Nagler, S.E., Mochrie, S.G.J., Greytak, T., Bermann, L.E., Held, G. and Stephenson, G.B., Nature 352, 608610 (1991).Google Scholar
12. Geissler, E., Hecht, A.-M., Rochas, C., Bley, F., Livet, F. and Sutton, M., Phys. Rev. E, 62, 83088313 (2000).Google Scholar
13. Berne, B.J. and Pecora, R., Dynamic Light Scattering, Wiley, New York 1976.Google Scholar