Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-fg2fv Total loading time: 0.232 Render date: 2021-10-23T09:03:44.718Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Size Effects Determined from Tensile Tests of Perforated MEMS Scale Specimens

Published online by Cambridge University Press:  15 March 2011

Ioannis Chasiotis
Affiliation:
Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, U.S.A.
Wolfgang G. Knauss
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, U.S.A.
Get access

Abstract

A systematic study of small-scale size effects has been conducted on elliptically perforated specimens with minimum radius of curvature of 1 micron. This study aimed at assessing the dependence of failure stress at the tip of a notch on varying: (a) stress concentration for constant radius of curvature, (b) radius of curvature of micro-notches relative to the material grain size and constant stress concentration. The experiments demonstrate a strong influence of notch radius on the failure strength of MEMS scale specimens, while the effect of the stress concentration factor is of rather secondary importance. The local failure strength at the tip of a notch increases when the radius of curvature becomes smaller, which is in accordance with the probabilistic nature of failure. When the notch radius becomes as small as 1 micron (only three times larger than the grain size) then a strong size effect is observed. This effect becomes moderate for larger radii of curvature, up to 8 microns (25 times the grain size), when the failure stress at the notch tip almost reaches the tensile strength recorded for 50 micron wide samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ding, J.N., Meng, Y.G., and Wen, S.Z., Mat.Science and Engineering B83, 4247, (2001).CrossRefGoogle Scholar
2. Namazu, T., Isono, Y. and Tanaka, T., Proc. IEEE 13th Int. Conf. MEMS, 2000, pp. 205210.Google Scholar
3. Sharpe, W.N, Jackson, K.M., Hemker, K.J. and Xie, Z., JMEMS 10 (3), 317326, (2001).Google Scholar
4. Sharpe, W. N. Jr., Brown, S., Johnson, G. C., and Knauss, W. G., Mater. Res. Soc. Proc. 518, San Francisco, CA, 1998, pp. 5765.Google Scholar
5. Chasiotis, I. and Knauss, W.G., Proc. of the SPIE 4175, Santa Clara, CA, 2000, pp. 96103.Google Scholar
6. Chasiotis, I. and Knauss, W.G., Mater. Res. Soc. Proc. 657, Boston, MA, 2000.Google Scholar
7. Neuber, H., Theory of Notch Stresses. Edwards Bros Inc., Ann Arbor, Michigan, (1946).Google Scholar
8. Isida, M. and Nakagawa, K., Proc. of 3rd Japan Nat. Congress for Appl. Mech., 1954, pp. 14.Google Scholar
9. Isida, M., Trans. of the Japan Soc. of Mech. Eng. 21, 514, (1955).CrossRefGoogle Scholar
10. Tan, S.C., J. Comp. Mater. 22, 10801097, (1988).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Size Effects Determined from Tensile Tests of Perforated MEMS Scale Specimens
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Size Effects Determined from Tensile Tests of Perforated MEMS Scale Specimens
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Size Effects Determined from Tensile Tests of Perforated MEMS Scale Specimens
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *