Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-b6fb2 Total loading time: 0.14 Render date: 2021-09-24T16:26:47.132Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Single Grain Si TFTs Fabricated at 100oC for Microelectronics on a Plastic Substrate

Published online by Cambridge University Press:  01 February 2011

Ming He
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
R. Ishihara
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
T. Chen
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
J.W. Metselaar
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
C.I.M. Beenakker
Affiliation:
mhe@dimes.tudelft.nl, Delft University of Technology, Delft Institute of Microelectronics and Submicrontechnology (DIMES), Feldmannweg 17, Delft, 2628CT, Netherlands
Get access

Abstract

Single grain TFTs are fabricated at a maximum temperature of 100oC for macroelectronics on a plastic substrate, as Si channels are fabricated at 100oC by combination of excimer laser crystallization and sputtering. The gate oxide is formed at 80°C by inductively coupled plasma enhanced chemical vapor deposition. These TFTs have shown a smaller threshold swing of 0.49 V/dec. and a higher field-effect mobility of 290 cm2/V·s, which can be used to directly fabricate system circuits or a high quality display on a plastic substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Reuss, R.H., Chalamala, B.R., Moussessian, A., Kane, M.G., Kumar, A., Zhang, D.C., Rogers, J.A., Hatalis, M., Temple, D., Moddel, G., Eliasson, B. J., Estes, M. J., Kunze, J., Handy, E.S., Harmon, E.S., Salzman, D.B., Woodall, J.M., Alam, M.A., Murthy, J.Y., Jacobsen, S.C., Olivier, M., Markus, D., Campbell, P.M. and Snow, E., proc. of the IEEE, Vol. 93, 2005, 12391256.CrossRefGoogle Scholar
2 Reuss, R.H., Hopper, D. G. and Park, J.-G., Mater Res Bull, Vol. 31, 2006, 447450.CrossRefGoogle Scholar
3 Ishihara, R., Hiroshima, Y., Abe, D., Dijk, B. D. van, Wilt, P. C. van der, Higashi, S., Inoue, S., Shimoda, T., Metselaar, J. W. and Beenakker, C. I. M., IEEE T Electr Dev, vol 51, 2004, 500502.CrossRefGoogle Scholar
4 Wilt, P. C. van der., Dijk, B. D. van, Bertens, G. J., Ishihara, R. and Beenakker, C. I. M., Appl. Phys. Lett., Vol. 79, 2001, 18191821.CrossRefGoogle Scholar
5 Smith, P. M., Carey, P. G. and Sigmon, T. W., Appl. Phys. Lett., Vol. 70 1997, 342344.CrossRefGoogle Scholar
6 Gosain, D. P. and Noguchi, T. and Usui, S., Jpn. J. Appl. Phys., Vol. 39, 2000, L179–L181.CrossRefGoogle Scholar
7 Burtsev, A., Apel, M. and Ishihara, R. and Beenakker, C. I. M., Thin Solid Film, Vol. 427, 2003, 309313.CrossRefGoogle Scholar
8 Im, J.S. and Kim, H.J., Appl. Phys. Lett., Vol. 64, 1994, 23032305.CrossRefGoogle Scholar
9 Ishihara, R., Chen, T., He, M., Deosarran, D., Andel, Y., Metselaar, J.W. and Beenakker, C.I.M., Thin Solid Film, submitted.Google Scholar
10 Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) physics and technology, 1982, John Wiley & Sons. Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Single Grain Si TFTs Fabricated at 100oC for Microelectronics on a Plastic Substrate
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Single Grain Si TFTs Fabricated at 100oC for Microelectronics on a Plastic Substrate
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Single Grain Si TFTs Fabricated at 100oC for Microelectronics on a Plastic Substrate
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *