Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 1.203 Render date: 2021-12-09T02:40:31.871Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Simultaneous Spectroscopic, Diffraction and Microscopic Study of the Metal-Insulator Transition of VO2

Published online by Cambridge University Press:  21 May 2015

J. Laverock
Affiliation:
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A.
S. Kittiwatanakul
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, U.S.A.
A. A. Zakharov
Affiliation:
MAX-lab, Lund University, SE-221 00 Lund, Sweden
Y. R. Niu
Affiliation:
MAX-lab, Lund University, SE-221 00 Lund, Sweden
B. Chen
Affiliation:
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A.
J. Kuyyalil
Affiliation:
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A.
S. A. Wolf
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, U.S.A. Department of Physics, University of Virginia, Charlottesville, VA 22904, U.S.A.
J. W. Lu
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, U.S.A.
K. E. Smith
Affiliation:
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, U.S.A. School of Chemical Sciences and The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Auckland, Auckland 1142, New Zealand
Get access

Abstract

We present a simultaneous photoemission spectroscopic, low-energy electron diffraction and low-energy electron microscopic study of the metal-insulator transition of strained VO2. The fraction of rutile structure is extracted from the microscopic measurements throughout the transition, and compared with the fraction of the metallic electrons from photoemission data. We find that at intermediate temperatures, while the system is predominantly monoclinic-like in structure, the electronic component of the transition is much further advanced. Our results provide direct evidence for a monoclinic-like metallic phase of VO2 that is easily accessible at ambient temperatures and pressures.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).CrossRef
Mott, N. F., Metal-Insulator Transitions (Taylor & Francis Ltd, London, 1974).Google Scholar
Haverkort, M. W., Hu, Z., Tanaka, A., et al., Phys. Rev. Lett. 95, 196404 (2005).CrossRef
Arcangeletti, E., Baldassarre, L., Di Castro, D., et al., Phys. Rev. Lett. 98, 196406 (2007).CrossRef
Hsieh, W.-P., Trigo, M., Reis, D. A., et al., Appl. Phys. Lett. 104, 021917 (2014).CrossRef
Kim, H.-T., Lee, Y. W., Kim, B.-J., et al., Phys. Rev. Lett. 97, 266401 (2006).CrossRef
Kim, B.-J., Lee, Y. W., Choi, S., et al., Phys. Rev. B 77, 235401 (2008).CrossRef
Tao, Z., Han, T.-R.T., Mahanti, S. D., et al., Phys. Rev. Lett. 109, 166406 (2012).CrossRef
Cocker, T. L., Titova, L. V., Fourmaux, S., et al., Phys. Rev. B 85, 155120 (2012).CrossRef
Laverock, J., Kittiwatanakul, S., Zakharov, A. A., et al., Phys. Rev. Lett. 113, 216402 (2014).CrossRef
West, K. G., Lu, J., Yu, J., et al., J. Vac. Sci. Technol. A 26, 133 (2008).CrossRef
Kittiwatanakul, S., Laverock, J., Newby, J., , D., et al., J. Appl. Phys. 114, 053703 (2013).CrossRef
Kittiwatanakul, S., Wolf, S. A., and Lu, J., Appl. Phys. Lett. 105, 073112 (2014).CrossRef
Laverock, J., Piper, L. F. J., Preston, A. R. H., et al., Phys. Rev. B 85, 081104(R) (2012).CrossRef
Laverock, J., Preston, A. R. H., Newby, J., , D., et al., Phys. Rev. B 86, 195124 (2012).CrossRef
Piper, L. F. J., DeMasi, A., Cho, S. W., et al., Phys. Rev. B 82, 235103 (2010).CrossRef
Diebold, U., Surf. Sci. Rep. 48, 53 (2003).CrossRef
Sambi, M., Sangiovanni, G., Granozzi, G., et al., Phys. Rev. B 55, 7850 (1997).CrossRef
Liu, M. K., Wagner, M., Abreu, E., et al., Phys. Rev. Lett. 111, 096602 (2013).CrossRef
Liu, M. K., Wagner, M., Zhang, J., et al., Appl. Phys. Lett. 104 (2014).
Qazilbash, M. M., Tripathi, A., Schafgans, A. A., et al., Phys. Rev. B 83, 165108 (2011).CrossRef
Okazaki, K., Wadati, H., Fujimori, A., et al., Phys. Rev. B 69, 165104 (2004).CrossRef
Saeki, K., Wakita, T., Muraoka, Y., et al., Phys. Rev. B 80, 125406 (2009).CrossRef
Koethe, T. C., Hu, Z., Haverkort, M. W., et al., Phys. Rev. Lett. 97, 116402 (2006).CrossRef
Eguchi, R., Taguchi, M., Matsunami, M., et al., Phys. Rev. B 78, 075115 (2008).CrossRef
Kumar, S., Strachan, J. P., Pickett, M. D., et al., Adv. Mater., in print (2014).
Yao, T., Zhang, X., Sun, Z., et al., Phys. Rev. Lett. 105, 226405 (2010).CrossRef
Yuan, X., Zhang, W., and Zhang, P., Phys. Rev. B 88, 035119 (2013).CrossRef
van Veenendaal, M, Phys. Rev. B 87, 235118 (2013).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Simultaneous Spectroscopic, Diffraction and Microscopic Study of the Metal-Insulator Transition of VO2
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Simultaneous Spectroscopic, Diffraction and Microscopic Study of the Metal-Insulator Transition of VO2
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Simultaneous Spectroscopic, Diffraction and Microscopic Study of the Metal-Insulator Transition of VO2
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *