Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-j4m62 Total loading time: 0.141 Render date: 2021-05-10T02:59:53.409Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Simultaneous Effects on Topography, Composition and Texture in Ion Assisted Deposition of Thin Films

Published online by Cambridge University Press:  01 February 2011

James M.E. Harper
Affiliation:
Department of Physics, University of New Hampshire Durham, NH 03824
Get access

Abstract

Ion bombardment during deposition may simultaneously affect thin film topography, composition and crystallographic texture. Ion etching can produce periodic ripples that depend on the angle of ion incidence and surface temperature. When applied during deposition, ion bombardment can produce in-plane crystallographic orientation in polycrystalline materials for specific angles of incidence. In addition, ion bombardment changes the composition of multicomponent thin films according to the local angles of ion incidence and ion/atom ratios. Therefore, these three mechanisms may be linked under certain deposition conditions to generate novel topographically patterned materials with locally controlled composition and texture. Examples include metal alloys, oxides and nitrides, and recommendations for specific nanoscale structures are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Kaufman, H.R., Cuomo, J.J., and Harper, J.M.E., J. Vac. Sci. Technol., 21, 725 (1982).CrossRefGoogle Scholar
2. Harper, J.M.E., Cuomo, J.J., and Kaufman, H.R., J. Vac. Sci. Technol., 21, 737 (1982).CrossRefGoogle Scholar
3. Harper, J.M.E., Cuomo, J.J., Gambino, R.J., and Kaufman, H.R., pp. 127162 in Ion Bombardment Modification of Surfaces: Fundamentals and Applications (Auciello, O. and Kelly, R., eds.), Elsevier Science Publishers B.V., Amsterdam, 1984.Google Scholar
4. Smidt, F.A., International Materials Reviews, 35, 61 (1990).CrossRefGoogle Scholar
5. Erlebacher, J., Aziz, M.J., Chason, E., Sinclair, M.B. and Floro, J.A., Phys. Rev. Lett. 82, 2330 (1999).CrossRefGoogle Scholar
6. Chini, T.K., Okuyama, F., Tanemura, M. and Nordlund, K., Phys. Rev. B67, 205403 (2003).CrossRefGoogle Scholar
7. Chan, W.L., Pavenayotin, N. and Chason, E., Phys. Rev. B69, 245413 (2004).CrossRefGoogle Scholar
8. Mayer, T.M., Chason, E. and Howard, A.J., J. Appl. Phys. 76, 1633 (1994).CrossRefGoogle Scholar
9. Iijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saitoh, T., Kohno, O. and Takeda, K., J. Mater. Res. 13, 3106 (1998).CrossRefGoogle Scholar
10. Batzill, M., Bardou, F. and Snowdon, K.J., J. Vac. Sci. Technol. A19, 1829 (2001).CrossRefGoogle Scholar
11. Carter, G., J. Phys. D: Appl. Phys. 34, R1 (2001).CrossRefGoogle Scholar
12. Cuerno, R. and Barabasi, A.L., Phys. Rev. Lett. 74, 4746 (1995).CrossRefGoogle Scholar
13. Habenicht, S., Lieb, K.P., Koch, J. and Wieck, A.D., Phys. Rev. B65, 115327 (2002).CrossRefGoogle Scholar
14. Facsko, S., Dekorsy, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A. and Hartnagel, H.L., Science 285, 1551 (1999).CrossRefGoogle Scholar
15. Brown, A.-D., Bola George, H., Aziz, M.J. and Erlebacher, J., Proc. Mat. Res. Soc. 729 (2003).Google Scholar
16. Bradley, R.M. and Harper, J.M.E., J. Vac. Sci. Technol. A6, 2390 (1988).CrossRefGoogle Scholar
17. Harper, J.M.E. and Gambino, R.J., J. Vac. Sci. Technol., 16, 1901 (1979).CrossRefGoogle Scholar
18. Rudeck, P.J., Harper, J.M.E. and Fryer, P.M., Appl. Phys. Lett. 53, 845 (1988).CrossRefGoogle Scholar
19. Harper, J.M.E., Berg, S., Nender, C., Katardjiev, I.V. and Motakef, S., J. Vac. Sci. Technol. A10, 1765 (1992).CrossRefGoogle Scholar
20. Oechsner, H., Z. Phys. 261, 37 (1973).CrossRefGoogle Scholar
21. Knoll, R.W., McClanahan, E.D. and Kjarmo, H.E., Thin Solid Films 118, 93 (1984).CrossRefGoogle Scholar
22. Yu, L.S., Harper, J.M.E., Cuomo, J.J., and Smith, D.A., Appl. Phys. Lett., 47, 932 (1985).CrossRefGoogle Scholar
23. Ji, H., Was, G.S. and Jones, J.W., Proc. Mat. Res. Soc. 434, 153 (1996).CrossRefGoogle Scholar
24. Ma, Z. and Was, G.S., J. Mater. Res. 14, 4051 (1999).CrossRefGoogle Scholar
25. Dong, L. and Srolovitz, D.J., Appl. Phys. Lett., 75, 584 (1999).CrossRefGoogle Scholar
26. Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., and Hammond, R.H., Appl. Phys. Lett., 71, 2955 (1997).CrossRefGoogle Scholar
27. Petrov, I., Barna, P.B., Hultman, I., and Greene, J.E., J. Vac. Sci. Technol., A21, S117 (2003).CrossRefGoogle Scholar
28. Rodriguez-Navarro, A., Otano-Rivera, W., Garcia-Ruiz, J.M., Messier, R. and Pilione, L.J., J. Mater. Res. 12, 1689 (1997).CrossRefGoogle Scholar
29. Iijima, Y., Onabe, K., Futaki, N., Sadakata, N., Kohno, O., Ikeno, Y., J. Appl. Phys., 74, 1905 (1993).CrossRefGoogle Scholar
30. Bradley, R.M., Harper, J.M.E., and Smith, D.A., J. Appl. Phys., 60, 4160 (1986).CrossRefGoogle Scholar
31. Karpenko, O., Bilello, J.C. and Yalisove, S.M., J. Appl. Phys. 76, 4610 (1994).CrossRefGoogle Scholar
32. Petrov, I., Barna, P.B., Hultman, L. and Greene, J.E., J. Vac. Sci. Technol. A21, S117 (2003).CrossRefGoogle Scholar
33. Dong, L., Srolovitz, D.J., Was, G.S., Zhao, Q. and Rollett, A.D., J. Mat. Res. 16, 210 (2001).CrossRefGoogle Scholar
34. Harper, J.M.E., Rodbell, K.P., Colgan, E.G. and Hammond, R.H., J. Appl. Phys. 82, 4319 (1997).CrossRefGoogle Scholar
35. Brewer, R.T. and Atwater, H.A., Appl. Phys. Lett. 80, 3388 (2002).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Simultaneous Effects on Topography, Composition and Texture in Ion Assisted Deposition of Thin Films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Simultaneous Effects on Topography, Composition and Texture in Ion Assisted Deposition of Thin Films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Simultaneous Effects on Topography, Composition and Texture in Ion Assisted Deposition of Thin Films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *