Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-14T08:23:08.338Z Has data issue: false hasContentIssue false

Simultaneous Effects on Topography, Composition and Texture in Ion Assisted Deposition of Thin Films

Published online by Cambridge University Press:  01 February 2011

James M.E. Harper*
Affiliation:
Department of Physics, University of New Hampshire Durham, NH 03824
Get access

Abstract

Ion bombardment during deposition may simultaneously affect thin film topography, composition and crystallographic texture. Ion etching can produce periodic ripples that depend on the angle of ion incidence and surface temperature. When applied during deposition, ion bombardment can produce in-plane crystallographic orientation in polycrystalline materials for specific angles of incidence. In addition, ion bombardment changes the composition of multicomponent thin films according to the local angles of ion incidence and ion/atom ratios. Therefore, these three mechanisms may be linked under certain deposition conditions to generate novel topographically patterned materials with locally controlled composition and texture. Examples include metal alloys, oxides and nitrides, and recommendations for specific nanoscale structures are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaufman, H.R., Cuomo, J.J., and Harper, J.M.E., J. Vac. Sci. Technol., 21, 725 (1982).Google Scholar
2. Harper, J.M.E., Cuomo, J.J., and Kaufman, H.R., J. Vac. Sci. Technol., 21, 737 (1982).Google Scholar
3. Harper, J.M.E., Cuomo, J.J., Gambino, R.J., and Kaufman, H.R., pp. 127162 in Ion Bombardment Modification of Surfaces: Fundamentals and Applications (Auciello, O. and Kelly, R., eds.), Elsevier Science Publishers B.V., Amsterdam, 1984.Google Scholar
4. Smidt, F.A., International Materials Reviews, 35, 61 (1990).Google Scholar
5. Erlebacher, J., Aziz, M.J., Chason, E., Sinclair, M.B. and Floro, J.A., Phys. Rev. Lett. 82, 2330 (1999).Google Scholar
6. Chini, T.K., Okuyama, F., Tanemura, M. and Nordlund, K., Phys. Rev. B67, 205403 (2003).Google Scholar
7. Chan, W.L., Pavenayotin, N. and Chason, E., Phys. Rev. B69, 245413 (2004).Google Scholar
8. Mayer, T.M., Chason, E. and Howard, A.J., J. Appl. Phys. 76, 1633 (1994).Google Scholar
9. Iijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saitoh, T., Kohno, O. and Takeda, K., J. Mater. Res. 13, 3106 (1998).Google Scholar
10. Batzill, M., Bardou, F. and Snowdon, K.J., J. Vac. Sci. Technol. A19, 1829 (2001).Google Scholar
11. Carter, G., J. Phys. D: Appl. Phys. 34, R1 (2001).Google Scholar
12. Cuerno, R. and Barabasi, A.L., Phys. Rev. Lett. 74, 4746 (1995).Google Scholar
13. Habenicht, S., Lieb, K.P., Koch, J. and Wieck, A.D., Phys. Rev. B65, 115327 (2002).Google Scholar
14. Facsko, S., Dekorsy, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A. and Hartnagel, H.L., Science 285, 1551 (1999).Google Scholar
15. Brown, A.-D., Bola George, H., Aziz, M.J. and Erlebacher, J., Proc. Mat. Res. Soc. 729 (2003).Google Scholar
16. Bradley, R.M. and Harper, J.M.E., J. Vac. Sci. Technol. A6, 2390 (1988).Google Scholar
17. Harper, J.M.E. and Gambino, R.J., J. Vac. Sci. Technol., 16, 1901 (1979).Google Scholar
18. Rudeck, P.J., Harper, J.M.E. and Fryer, P.M., Appl. Phys. Lett. 53, 845 (1988).Google Scholar
19. Harper, J.M.E., Berg, S., Nender, C., Katardjiev, I.V. and Motakef, S., J. Vac. Sci. Technol. A10, 1765 (1992).Google Scholar
20. Oechsner, H., Z. Phys. 261, 37 (1973).Google Scholar
21. Knoll, R.W., McClanahan, E.D. and Kjarmo, H.E., Thin Solid Films 118, 93 (1984).Google Scholar
22. Yu, L.S., Harper, J.M.E., Cuomo, J.J., and Smith, D.A., Appl. Phys. Lett., 47, 932 (1985).Google Scholar
23. Ji, H., Was, G.S. and Jones, J.W., Proc. Mat. Res. Soc. 434, 153 (1996).Google Scholar
24. Ma, Z. and Was, G.S., J. Mater. Res. 14, 4051 (1999).Google Scholar
25. Dong, L. and Srolovitz, D.J., Appl. Phys. Lett., 75, 584 (1999).Google Scholar
26. Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., and Hammond, R.H., Appl. Phys. Lett., 71, 2955 (1997).Google Scholar
27. Petrov, I., Barna, P.B., Hultman, I., and Greene, J.E., J. Vac. Sci. Technol., A21, S117 (2003).Google Scholar
28. Rodriguez-Navarro, A., Otano-Rivera, W., Garcia-Ruiz, J.M., Messier, R. and Pilione, L.J., J. Mater. Res. 12, 1689 (1997).Google Scholar
29. Iijima, Y., Onabe, K., Futaki, N., Sadakata, N., Kohno, O., Ikeno, Y., J. Appl. Phys., 74, 1905 (1993).Google Scholar
30. Bradley, R.M., Harper, J.M.E., and Smith, D.A., J. Appl. Phys., 60, 4160 (1986).Google Scholar
31. Karpenko, O., Bilello, J.C. and Yalisove, S.M., J. Appl. Phys. 76, 4610 (1994).Google Scholar
32. Petrov, I., Barna, P.B., Hultman, L. and Greene, J.E., J. Vac. Sci. Technol. A21, S117 (2003).Google Scholar
33. Dong, L., Srolovitz, D.J., Was, G.S., Zhao, Q. and Rollett, A.D., J. Mat. Res. 16, 210 (2001).Google Scholar
34. Harper, J.M.E., Rodbell, K.P., Colgan, E.G. and Hammond, R.H., J. Appl. Phys. 82, 4319 (1997).Google Scholar
35. Brewer, R.T. and Atwater, H.A., Appl. Phys. Lett. 80, 3388 (2002).Google Scholar