Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-mqrwx Total loading time: 0.245 Render date: 2022-12-06T18:57:10.934Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Simulations of Lubricants in Confined Geometries

Published online by Cambridge University Press:  10 February 2011

Mark J. Stevens
Affiliation:
P.O. Box 5800, MS 1111, Sandia National Laboratory, Albuquerque, NM 87185–1111
Maurizio Mondello
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, An-nandale, NJ 08801
Gary S. Grest
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, An-nandale, NJ 08801
Get access

Abstract

We examine the shear flow of hexadecane and squalane confined between plates with nm separation using molecular dynamics simulations. For both molecules substantial slip occurs at the walls and the density profile exhibits strong oscillations. In contrast to surface force apparatus measurements, our calculated effective viscosities are not much greater than bulk viscosities, but the simulations shear rates are much larger than the experimental ones. The actual viscosity calculated using the shear rate measured from the observed velocity profile is almost equal to the bulk viscosity within uncertainty.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Israelachvili, J. N., Intermolecular and Surface Forces, 2nd ed. (Academie Press, San Diego, 1992).Google Scholar
2. Israelachvili, J. N., McGuiggan, P. M., and Homola, A. M., Science 240, 189 (1988).CrossRefGoogle Scholar
3. Israelachvili, J. N. and McGuiggan, P. M., Science 241, 795 (1988).CrossRefGoogle Scholar
4. Alsten, J. V. and Granick, S., Phys. Rev. Lett. 61, 2570 (1988).CrossRefGoogle Scholar
5. Hu, H.-W., Carson, G. A., and Granick, S., Phys. Rev. Lett. 66, 2758 (1991).CrossRefGoogle Scholar
6. Granick, S., Science 253, 1374 (1991).CrossRefGoogle Scholar
7. Klein, J., Perahia, D., and Warburg, S., Nature 352, 143 (1991).CrossRefGoogle Scholar
8. Klein, J. and Kumacheva, E., Science 269, 5225 (1995).CrossRefGoogle Scholar
9. Demirei, A. L. and Granick, S., Phys. Rev. Lett. 77, 2261 (1996).CrossRefGoogle Scholar
10. Krim, J., Solina, D., and Chiarello, R., Phys. Rev. Lett. 66, 181 (1991).CrossRefGoogle Scholar
11. Carson, G. A., Hu, H.-W., and Granick, S., Tribology Transactions 35, 405 (1992).CrossRefGoogle Scholar
12. Carson, G. A., Ph.D. thesis, U. Illinois, 1992.Google Scholar
13. Granick, S., private communication.Google Scholar
14. Thompson, P. A., Grest, G. S., and Robbins, M. O., Phys. Rev. Lett. 68, 3448 (1992).CrossRefGoogle Scholar
15. Thompson, P. A., Robbins, M. O., and Grest, G. S., Israel J. of Chem. 35, 93 (1995).CrossRefGoogle Scholar
16. Gee, M. L., McGuiggan, P. M., Israelachvili, J. N., and Homola, A. M., J. Chem. Phys. 93, 1895 (1990).CrossRefGoogle Scholar
17. Granick, S., Demirel, A. L., Cai, L. L., and Peanasky, J., Israel J. of Chem. 35, 75 (1995).CrossRefGoogle Scholar
18. Abraham, F. F., J. Chem. Phys. 68, 3713 (1978).CrossRefGoogle Scholar
19. Toxvaerd, S., J. Chem. Phys. 74, 1998 (1981).CrossRefGoogle Scholar
20. Schöen, M., Cushman, J. H., Diestier, D., and Rhykerd, C. L., J. Chem. Phys. 88, 1394 (1988).CrossRefGoogle Scholar
21. Padilla, P. and Toxvaerd, S., J. Chem. Phys. 101, 1490 (1994).CrossRefGoogle Scholar
22. Manias, E., Hadziioannou, G., Bitsanis, I., and ten Brinke, G., Europhys. Lett. 24, 99 (1993).CrossRefGoogle Scholar
23. Mundy, C., Siepmann, J., and Klein, M. L., J. Chem. Phys. 102, 3375 (1995).CrossRefGoogle Scholar
24. Mondello, M. and Grest, G. S., J. Chem. Phys. 103, 7156 (1995);CrossRefGoogle Scholar
Mondello, M., Grest, G. S., Garcia, A. R., and Silbernagel, B. G., J. Chem. Phys. 105, 5208 (1996).CrossRefGoogle Scholar
25. Cui, S. T., Cummings, P. T., and Cochran, H. D., J. Chem. Phys. 104, 255 (1996);CrossRefGoogle Scholar
Cui, S. T., Gupta, S. A., Cummings, P. T., and Cochran, H. D., J. Chem. Phys. 105, 1214 (1996).CrossRefGoogle Scholar
26. Siepmann, J. I., Karaborni, S., and Smit, B., Nature 365, 330 (1993).CrossRefGoogle Scholar
27. Jorgensen, W. L., Madura, J. D., and Swenson, C., J. Am. Chem. Soc. 106, 6638 (1984).CrossRefGoogle Scholar
28. Allen, M. and Tildesley, D., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
29. Tuckerman, M., Berne, B., and Martyna, G., J. Chem. Phys. 97, 1990 (1992).CrossRefGoogle Scholar
30. Grest, G. S. and Kremer, K., Phys. Rev. A33, 3628 (1986).CrossRefGoogle Scholar
31. van Gunsteren, W. F. and Berendsen, H., Mol. Phys. 45, 637 (1982).CrossRefGoogle Scholar
32. Stevens, M. S. et al., submitted to J. Chem. Phys (1996).Google Scholar
33. Kessel, C. and Granick, S., Langmuir 7, 532 (1991).CrossRefGoogle Scholar
34. Balasubramanian, S., Klein, M. L., and Siepmann, J. L., J. Phys. Chem. 100, 11960 (1996).CrossRefGoogle Scholar
35. Frink, L. and van Swol, F., preprint (1996).Google Scholar
36. Siepmann, J. I., Mundy, C., and Klein, M. L., preprint (1996).Google Scholar
37. Manias, E., Bitsanis, I., Hadziioannou, G., and ten Brinke, G., Europhys. Lett. 33, 371 (1996).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Simulations of Lubricants in Confined Geometries
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Simulations of Lubricants in Confined Geometries
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Simulations of Lubricants in Confined Geometries
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *