Hostname: page-component-788cddb947-m6qld Total loading time: 0 Render date: 2024-10-07T22:04:19.289Z Has data issue: false hasContentIssue false

Silver Nanocrystals at Cavities Created by High Energy Helium Implantation in Bulk Silicon

Published online by Cambridge University Press:  01 February 2011

Rachid El Bouayadi
Affiliation:
rachid.elbouayadi@laposte.net, LES, University of Oujda, Faculté des sciences, B.P. 717 Oujda 60000, Morocco
Gabrielle Regula
Affiliation:
gabrielle.regula@univ-cezanne.fr, Paul Cézanne University, Aix-Marseille III, TECSEN, Avenue de l'Escadrille Normandie Niemen, Marseille, 13397, France
Maryse Lancin
Affiliation:
maryse.lancin@univ-cezanne.fr, Paul Cézanne University, Aix-Marseille III, TECSEN, Avenue de l'Escadrille Normandie Niemen, Marseille, 13397, France
Eduardo Larios
Affiliation:
e.larios@polimeros.uson.mx, University of Sonora, DIPM, Blvd Transversal y Rosales, Hermosillo,, Sonora, 83 000, Mexico
Bernard Pichaud
Affiliation:
bernard.pichaud@univ-3mrs.fr, Paul Cézanne University, Aix-Marseille III, TECSEN, Avenue de l'Escadrille Normandie Niemen, Marseille, 13397, France
Esidor Ntsoenzok
Affiliation:
esidor@cnrs-orleans.fr, University of Orléans, CERI-CNRS, 3A rue de la Férollerie, Orléans, 45071, France
Get access

Abstract

High resolution transmission electron microscopy observations show for the first time the presence of two orientations of pure silver precipitates in nanocavities induced in bulk silicon by implantation at 1.6 MeV with a dose of 5×1016 He+ cm−2 and a two hour annealing at 1050°C. These precipitates were called A and B to refer to the two well-known nickel silicide (NiSi2) precipitates or Ag films on a {111} silicon surface. Thus, the A precipitate corresponds to a growth of silver nanocrystal on {111} cavity walls in epitaxy with the Si matrix with an orientation relationship Ag(-111)[211]||Si(-111)[211]. The B precipitate develops on a {111} plane parallel to a {111} cavity wall as well, but in a twin orientation with respect to the Si matrix defined by Ag(-111)[211]||Si(-111)[-2-1-1]. The Ag nanocrystals have a size ranging from a few nm to 50 nm. Most of them have the faceted-shape characteristic of “clean” cavities. They are either A precipitates or they contain alternatively A and B bands in good agreement with both the low stacking fault energy of silver and the two types of nanocrystal orientations obtained by Ag deposition on (111) Si substrate at room temperature. Some Ag precipitates were also found at dislocations located at the He+ projection range, but these trapping sites were found thermally unstable as compared to the cavity ones. Indeed, during a second identical annealing, the precipitates grow in cavities whereas they fade at dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kar, S. and Varghese, R., J. Appl. Phys. 53, 44354440 (1982)Google Scholar
2. Chen, Linghui, Zeng, Yuxiao, Nyugen, Phucanh, Alford, T.L., Materials Chemistry and Physics 76 224227 (2002)Google Scholar
3. Graff, K., Metal Impurities in Silicon-Device Fabrication, Springler, Berlin (1995)Google Scholar
4. Kinomura, A., Williams, J. S., Wong-Leung, J., and Petravic, M., Appl. Phys. Lett. 72, 2713 (1998)Google Scholar
5. Rollert, F., Stolwijk, N. A., Mehrer, H., J. Phys. D: Appl. Phys. 20, 11481155 (1987)Google Scholar
6. Wong-Leung, J., Ascheron, C.E, Petravic, M., Elliman, R. G. and Williams, J. S., Appl. Phys. Lett. 67,416 (1995)Google Scholar
7. Myers, S. M., Follstaedt, D. M. and Bishop, D. M., Mater. Sci. Forum 143-147, 1635 (1994)Google Scholar
8. Myers, S. M and Follstaedt, D. M., J. Appl. Phys. 79, 1337 (1996)Google Scholar
9. Regula, G., Bouayadi, R. El, Pichaud, B. and Ntsoenzok, E., Solid State Phenomena 82-84, 355360(2002)Google Scholar
10. Eaglesham, D. J., White, A. E., Feldman, L. C., Moriya, N., Jacobson, D. C., Phys. Rev. Lett. 70,1643 (1993)Google Scholar
11. Follstaedt, D. M., Myers, S. M, Petersen, G. A., Medernach, J. W., J. Electron. Mater. 25, 157(1996)Google Scholar
12. Bouayadi, R. El, Regula, G., Pichaud, B., Lancin, M., Dubois, C., Ntsoenzok, E., phys. stat. sol. (b)222, 319 (2000)Google Scholar
13. Bouayadi, R. El, Regula, G., Lancin, M., Pichaud, B., Desvignes, M., J. Appl. Phys., 99, 43509 (2006)Google Scholar
14. Chung, J. and Möller, H.J., Phys. stat. sol. (a)138,473 (1993)Google Scholar
15. Zhang, X.B., Vasiliev, A.L., Tendeloo, G. Van, He, Yan, Yu, L.-M., Thiry, P.A., Surface Science 340 317327 (1995)Google Scholar
16. Sumitomo, K., Kobayashi, T., Shoji, F., Oura, K., Phys. Rev. Lett. 66 9 11931196 (1991)Google Scholar
17. Meyer, G. and Rieder, K.H., Surface Science 331-333, 600605 (1995)Google Scholar
18. Kern, R., Müller, P., J. Cryst. Growth, 146, 193 (1995)Google Scholar
19. Müller, P., Kern, R., Surface Science 529 5994 (2003)Google Scholar
20. Mehl, M. J., Papaconstantopoulos, D. A., Kioussis, N., Herbranson, M., PRB 61, 7 48944897 (2000).Google Scholar