Hostname: page-component-7d684dbfc8-w65q4 Total loading time: 0 Render date: 2023-09-25T04:43:54.867Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

SIC-LSD study of δ-Pu and PuOx

Published online by Cambridge University Press:  01 February 2011

L. Petit
Affiliation:
Computer Science and Mathematics Division, and Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
A. Svane
Affiliation:
Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
Z. Szotek
Affiliation:
Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
W. M. Temmerman
Affiliation:
Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
Get access

Abstract

The electronic structures of actinide solid systems are calculated using the self-interaction corrected local spin density approximation. Within this scheme the 5f electron manifold is considered to consist of both localized and delo-calized states, and by varying their relative proportions the energetically most favourable (ground state) configuration can be established. Specifically, we discuss elemental Pu in its δ-phase, and the effects of adding O to PuO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Johansson, B. and Skriver, H. L., J. Magn. Magn. Mat. 29, 217 (1982).CrossRefGoogle Scholar
[2] Jones, M. D., Boettger, J. C., Albers, R. C. and Singh, D. J., Phys. Rev. B 61, 4644 (2000).CrossRefGoogle Scholar
[3] Perdew, J. P. and Zunger, A., Phys. Rev. B. 23, 5048 (1981).CrossRefGoogle Scholar
[4] Temmerman, W. M., Svane, A., Szotek, Z. and Winter, H., in Electronic Density Functional Theory: Recent Progress and New Directions, edited by Dobson, J. F., Vignale, G. and Das, M. P., (Plenum, New York, 1998), p. 327.CrossRefGoogle Scholar
[5] Petit, L., Svane, A., Temmerman, W. M. and Szotek, Z., Sol. State Commun. 116, 379 (2000).CrossRefGoogle Scholar
[6] Söderlind, P., Landa, A., and Sadigh, B., Phys. Rev. B 66, 205109 (2002).CrossRefGoogle Scholar
[7] Savrasov, S. Y. and Kotliar, G., Phys. Rev. Lett. 84, 3670 (2000).CrossRefGoogle Scholar
[8] Eriksson, O., Becker, J. D., Balatsky, A. V. and Wills, J. M., J. Alloys Compd. 287, 1 (1999).CrossRefGoogle Scholar
[9] Savrasov, S. Y., Kotliar, G. and Abrahams, E., Nature (London) 410, 793 (2001).CrossRefGoogle Scholar
[10] Haschke, J. M., Allen, T. H., and Morales, L. A., Science 287, 285 (2000).CrossRefGoogle Scholar
[11] Petit, L., Svane, A., Szotek, Z. and Temmerman, W. M., Science, 301, 498 (2003).CrossRefGoogle Scholar