Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-fz4lj Total loading time: 0.186 Render date: 2021-07-25T04:09:57.896Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

SiC Bipolar Power Transistors - Design and Technology Issues for Ultimate Performance

Published online by Cambridge University Press:  01 February 2011

Mikael Ostling
Affiliation:
ostling@kth.se, Royal Institute of Technology, School of ICT, Kista, Sweden
Martin Domeij
Affiliation:
mdomeij@kth.se, Royal Institute of Technology, School of ICT, Kista, Sweden
Carina Zaring
Affiliation:
carina.zaring@transic.com, TranSiC AB, Kista, Sweden
Andreij Konstantinov
Affiliation:
Andreij.konstantinov@transic.com, TranSiC AB, Kista, Sweden
Reza Ghandi
Affiliation:
ghandi@kth.se, Royal Institute of Technology, School of ICT, Kista, Sweden
Benedetto Buono
Affiliation:
buono@kth.se, Royal Institute of Technology, School of ICT, Kista, Sweden
Anders Hallen
Affiliation:
ahallen@kth.se, Royal Institute of Technology, School of ICT, Kista, Sweden
Carl-Mikael Zetterling
Affiliation:
bellman@kth.se, Royal Institute of Technology, School of ICT, Kista, Sweden
Get access

Abstract

Silicon carbide (SiC) semiconductor devices for high power are becoming more mature and are now commercially available as discrete devices. Schottky diodes have been on the market since a few years but also bipolar junction transistors (BJTs), JFETs and MOSFETs are now reaching the market. The interest is rapidly growing for these devices in high power and high temperature applications. The BJTs have low conduction losses, fast switching capability, operate in normally-off mode, have high radiation hardness, and can handle high power density.

This paper will review the current state of the art in active switching device performance with special emphasis on BJTs. Device performance has been demonstrated over a wide temperature interval. A very important feature in high power switch applications is the low on-resistance of a device. Better material quality and epi processes suppress the amount of basal plane dislocations to avoid stacking fault formation generated during high current injection. This has long been a concern for bipolar SiC devices but several research reports and long term reliability measurements of pn-junctions show that the bipolar degradation problem can be solved by a fine-tuned epitaxial technique. A discussion on surface passivation control is included.

Finally, an example of a power switching module is given also demonstrating the excellent paralleling capability of BJTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Zetterling, C.-M., Ed., “Process technology for silicon carbide devices,” in EMIS processing series, IEE, 2002.Google Scholar
2 Östling, M., Koo, S.-M., Domeij, M., Danielsson, E., and Zetterling, C.-M., “SiC Device Technologies,” in Encyclopedia of RF and Microwave Engineering: John Wiley & Sons, Inc., 2005, pp. 46134619 Google Scholar
3 Huang, C-F., Kan, C-L., Wu, T-L., Lee, M-C., Liu, Y-Z., Lee, K-Y., and Zhao, F., IEEE Electron Device Letters, vol. 30, no. 9, (2009) pp. 957959.CrossRefGoogle Scholar
4 Ghandi, R., Lee, H-S., Domeij, M., Buono, B., Zetterling, C-M., and Östling, M., IEEE Electron Device Letters, vol. 29, no. 10 (2008) pp.11351137.CrossRefGoogle Scholar
5 Lee, H-S., Domeij, M., Zetterling, C-M., Östling, Mikael, Allerstam, F., and Sveinbjörnsson, E.Ö., IEEE Electron Device Letters, vol. 28, no. 11, (2007) pp. 10071009.CrossRefGoogle Scholar
6 Zhang, J., Alexandrov, P., Zhao, J.H., Materials Science Forum, v 600–603, (2009) pp. 11551158.Google Scholar
7 Noborio, M., Suda, J., and Kimoto, T., IEEE Electron Device Letters, vol. 30, no. 8 (2009) pp. 831833.CrossRefGoogle Scholar
8 Cheng, L., Sankin, I., Bondarenko, V., Mazzola, M. S., Scofield, J. D., Sheridan, D. C., Martin, P., Casady, J. R. B., and Casady, J. B., Materials Science Forum Vols. 600–603 (2009) pp 10551058.Google Scholar
9 Veliadis, V., McNutt, T., Snook, M., Hearne, H., Potyraj, P., and Scozzie, C., IEEE Electron Device Letters, vol. 29, no. 10, (2008) pp.11321134.CrossRefGoogle Scholar
10 Jonas, C., Cappel, C., Burk, A., Zhang, Q., Callanan, R., Agarwal, A., Geil, B., and Scozzie, C., Journal of Electronic Materials, vol. 37, no. 5, (2008) pp. 662665.CrossRefGoogle Scholar
11 Li, Y., Alexandrov, P., and Zhao, J. H., IEEE Transactions on Electron Devices, vol. 55, no. 8 (2008) pp.18801886.CrossRefGoogle Scholar
12 Veliadis, V., Snook, M., McNutt, T., Hearne, H., Potyraj, P., Lelis, Aivars, and Scozzie, C., IEEE Electron Device Letters, vol. 29, no. 12 (2008) pp.13251327.CrossRefGoogle Scholar
13 Ritenoura, A., Bondarenko, V., Kelley, R., and Sheridan, D. C., Materials Science Forum Vols. 615–617 (2009) pp. 715718.CrossRefGoogle Scholar
14 Hull, B. A., Jonas, C., Ryu, S-H, Das, M., O'Loughlin, M., Husna, F., Callanan, R., Richmond, J., Agarwal, A., Palmour, J. and Scozzie, C., Materials Science Forum Vols. 615–617 (2009) pp. 749752.CrossRefGoogle Scholar
15 Nonaka, K., Horiuchi, A., Negoro, Y., Iwanaga, K., Yokoyama, S., Hashimoto, H., Sato, M., Maeyama, Y., Shimizu, M. and Iwakuro, H., Materials Science Forum Vols. 615–617 (2009) pp. 821824.CrossRefGoogle Scholar
16 Zhang, J., Fursin, L., Li, X., Wang, X., Zhao, Jian H., VanMil, B. L., M-Ward, R. L., Eddy, C. R. Jr, and Gaskill, D. K., Materials Science Forum Vols. 615–617 (2009) pp. 829832.CrossRefGoogle Scholar
17 Sheridan, D.C., Ritenour, A., Bondarenko, V., Burks, P., and Casady, J.B., Proceeding of 21st International Symposium on Power Semiconductor Devices & IC's, (2009) pp. 335338.Google Scholar
18 Zhang, Q., Burk, A., Husna, F., Callanan, R., Agarwal, A., Palmour, J., Stahlbush, R., and Scozzie, C., Proceeding of 21st International Symposium on Power Semiconductor Devices & IC's, (2009), pp. 339342.Google Scholar
19 Matochaa, K., Stumb, Z., Arthurc, S., Dunned, G. and Stevanovic, L., Materials Science Forum Vols. 600–603 (2009) pp 11311134.Google Scholar
20 Ryu, S.-H., Krishnaswami, S., O'Loughlin, M., Richmond, J., Agarwal, A., Palmour, J., and Hefner, A.R., IEEE Electron Device Letters, vol. 25, p. 556, 2004.CrossRefGoogle Scholar
21 Ryu, S.-H., Agarwal, A., Richmond, J., Das, M., Lipkin, L., Palmour, J., Saks, N., and Williams, J., Materials Science Forum Vols. 389–393 (2002) pp. 11951198.CrossRefGoogle Scholar
22 Tan, J., Cooper, J. A. Jr, and Melloch, M. R., IEEE Electron Device Letters, vol. 19, (1998), p. 487.CrossRefGoogle Scholar
23 Zhang, J., Zhao, J. H., Alexandrov, P., and Burke, T., Electronics Letters, vol. 40 (2004) p. 1381.CrossRefGoogle Scholar
24 Balachandran, S., , Li. C., Losee, P.A., Bhat, I.B., and Chow, T. P., Proceeding of 19th International Symposium on Power Semiconductor Devices & IC's, (2007), pp. 293296.CrossRefGoogle Scholar
25 Zhao, J. H., Tone, K., Alexandrov, P., Fursin, L., and Weiner, M., IEEE Electron Device Letters, vol. 24 (2003) p. 81.CrossRefGoogle Scholar
26 Zhao, J. H., Alexandrov, P., Zhang, J., and Li, X., IEEE Electron Device Letters, vol. 25 (2004) p. 474.CrossRefGoogle Scholar
27 Domeij, M., Zaring, C., Konstantinov, A.O., Nawaz, M., Svedberg, J-O., Gumaelius, K., Keri, I., Lindgren, A., Hammarlund, B., Östling, M., Reimark, M., Materials Science Forum Vols. 645–648 (2010) pp 10331036 CrossRefGoogle Scholar
28 Ghandi, R., Buono, B., Domeij, M., Malm, G., Zetterling, C.-M. and Östling, M., IEEE Electron Device Letters, vol. 30 (11) (2009) p. 11701172.CrossRefGoogle Scholar
29 Porter, L.M., “Thermal Stability and Defects in Contacts to Silicon Carbide,” in Wide Band Gap Materials and New Developments, Syväjärvi, M. and Yakimova, R., eds. (Research Signpost, Kerala, India) pp. 187208, 2006 Google Scholar
30 Lundberg, N. and Östling, M., Solid-State Electronics, vol. 39, pp. 15591565, 1996 CrossRefGoogle Scholar
31 Ghandi, R., Domeij, M., Esteve, R., Buono, B., Schoner, A., Han, J., Dimitrijev, S., Reshanov, S.A., Zetterling, C.-M., Ostling, M., Materials Science Forum, vols. 645–648 (2010) pp 661664.CrossRefGoogle Scholar
32 Lee, H.-S., Domeij, M., Zetterling, C.M., Östling, M., Allerstam, F., and Sveinbjörnsson, E.Ö., IEEE Electron Device Lett, Vol. 28, No. 11, p 1007 (2007)CrossRefGoogle Scholar
33 Nawaz, M., Zaring, C., Onoda, S., Ohshima, T. and Östling, M., Proceedings of 67th Device Research Conference, The Pennsylvania State University, University Park, PA, June 22-24 2009, p. 279280 Google Scholar
34 Cartiglia, N., Dorfan, D.E., Pitzl, D., Rahn, J., Rowe, W.A., Sadrozinski, H.F.-W., Spencer, E.N., and Wilder, M., Conf. Rec. 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.92CH3232-6), p 819–21 vol.2, (1992)Google Scholar
35 Sutton, A.K., Haugerud, B.M., Prakash, A.P.G., Jun, B., Cressler, J.D., Marshall, C., Marshall, P., Ladbury, R., Guarin, F., and Joseph, A.J., IEEE Trans. Nucl. Science, 52, p. 2358 (2005)CrossRefGoogle Scholar
36 Hallén, A., Nawaz, M., Zaring, C., Usman, M., Domeij, M., and Östling, M., IEEE Electron Device Letters, In press.Google Scholar
37 Skowronski, M. and Ha, S.: J. Appl. Phys. Vol. 99 (2006) p. 011101.CrossRefGoogle Scholar
38 Konstantinov, A., Domeij, M., Zaring, C., Keri, I., Svedberg, J.-O., Gumaelius, K., Östling, M. and Reimark, M.. Materials Science Forum vols. 645–648 (2010) pp 10571060.CrossRefGoogle Scholar
39 Sumakeris, J.J., Bergman, J.P., Das, M.K., Hallin, C., Hull, B.A., Janzén, E., Lendenmann, H., O'Loughlin, M.J., Paisley, M.J., Ha, S.Y., Skowronski, M., Palmour, J.W. and Carter, C.H. Jr. Materials Science Forum vols. 527–529 (2006) pp 141146.Google Scholar
40 Kallinger, B., Thomas, B. and Friedrich, J.. Materials Science Forum Vols. 600–603 (2009) pp. 143146.Google Scholar
41 Franke, W.-T. and Fuchs, F.W, 13th European Conference on Power Electronics Power Electronics and Applications, 2009. EPE '09. (p. 110)Google Scholar
42www.transic.com (http://www.transic.com/index.php/news/78-transic-successfully-designs-sic-power-modules-for-high-power-applications) 2009 Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

SiC Bipolar Power Transistors - Design and Technology Issues for Ultimate Performance
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

SiC Bipolar Power Transistors - Design and Technology Issues for Ultimate Performance
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

SiC Bipolar Power Transistors - Design and Technology Issues for Ultimate Performance
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *