Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T02:29:46.283Z Has data issue: false hasContentIssue false

Semiconductor Quantum Dots for Cell Imaging

Published online by Cambridge University Press:  31 January 2011

Zoraida Pascual Aguilar
Affiliation:
zaguilar@oceannanotech.comzapaguilar@yahoo.com
Hengyi Xu
Affiliation:
hxu@oceannanotech.com, Ocean NanoTech, Springdale, Arkansas, United States
Ben Jones
Affiliation:
bjones@oceannanotech.com, Ocean NanoTech, Spridaleng, Arkansas, United States
John Dixon
Affiliation:
jdixon@oceannanotech.com, Ocean NanoTech, Springdale, Arkansas, United States
Andrew Wang
Affiliation:
awang@oceannanotech.com, Ocean NanoTech, Springdale, Arkansas, United States
Get access

Abstract

Nanotechnology is currently undergoing unprecedented development in various fields. There has been a widespread interest in the application of nanomaterials in medicine with its promise of improving imaging, diagnostics, and therapy. The recent advances in engineering and technology have led to the development of new nanoscale platforms such as quantum dots, gold nanocrystals, superparamagnetic nanocrystals, and other semiconductor nanoparticles. Literature on the applications of quantum dots in life sciences has recently increased in number. This may have led to predictions that nanotechnology in life sciences research will contribute $3.4 billion by 2010 while institutions have predicted that the market for nanotechnology and corresponding products will reach $1 trillion in 2012 (1).

Ocean NanoTech is at the height of developmental stages of nanoparticle production for biological applications. Ocean’s high quantum-yield quantum dots (QDs) is currently being tested and used for cell imaging, as wells as for the detection of proteins, DNA, whole cells, and whole organisms. Imaging of cells involves conjugation of QDs to highly sensitive and specific antibody to form QD˜Ab conjugates that attach to specific protein target on the cell surface. Attachment of the QD˜Ab on the cell surface allows imaging of the cell under a fluorescence microscope. QD based imaging can be used in a multiplex immunoassay detection of several types of cells (or microorganisms) in a single sample when several size tunable quantum dots are used as reporter probes.

We report the QD imaging of breast cancer cells. Using the breast cancer cell line SK-BR3, which expresses high levels of her2 antigens on the cell surface, anti-her2 were conjugated to Ocean’s quantum dots, QSH620. To eliminate non-specific binding of the QD˜20Ab Ocean’s super blocking buffer BBB and BBG were used. Preliminary results of in vitro studies indicated that QD based systems can be used to image cells. We anticipate that this system can be transferred to in vivo detection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Murday, J.S. Siegel, R.W. Stein, J., Wright, J.F. Translational nanomedicine: status assessment and opportunities, Nanomedicine: Nanotechnology, Biology, and Medicine 5 (2009) 251273.Google Scholar
2 Yang, L., Mao, H., Wang, Y. A. Cao, Z., Peng, X., Wang, X., Duan, H., Ni, C., Yuan, Q., Adams, G., Smith, M. Q. Wood, W. C. Gao, X. and Nie, S., Small, 5, 235 (2009).Google Scholar
3 Rosi, N. L. and Mirkin, C. A. Chem. Rev., 105, 1547 (2005).Google Scholar
4 Medintz, I. L. Uyeda, H. T. Goldman, E. R. and Mattoussi, H., Nat. Mater., 4, 435 (2005).Google Scholar
5 Katz, E. and Willner, I., Angew. Chem. Int. Ed., 43, 6042 (2004).Google Scholar
6 Aguilar, Z. P. Analytical Chemistry, 78(4), 11221129 (2006).Google Scholar
7 Aguilar, Z. P. Fritsch, I., Analytical Chemistry, 75, 38903897 (2003).Google Scholar
8 Pantel, K., Brakenhoff, R. H. and Brandt, B.. Nat. Rev. Cancer., 8, 329 (2008).Google Scholar
9 Horner, M. J. Ries, L. A. G. Krapcho, M., Neyman, N., Aminou, R., Howlader, N., Altekruse, S. F. Feuer, E. J. Huang, L., Mariotto, A., Miller, B. A. Lewis, D. R. Eisner, M. P. Stinchcomb, D. G. and Edwards, B. K. SEER Cancer Statistics Review: 1975-2006, National Cancer Institute, Bethesda (2009).Google Scholar
10 Goldhirsch, A., Wood, W. C. Gelber, R. D. Coates, A. S. Thürlimann, B. and Senn, H. J. Ann. Oncol., 18, 1133 (2007).Google Scholar
11 Eifel, P., Axelson, J. A. Costa, J., Crowley, J., Curran, W. J. Deshler, A., Fulton, S., Hendricks, C., Kemeny, M., Kornblith, A. B. Louis, T. A. Markman, M., Mayer, R. and Roter, D., J. Natl. Cancer. Inst., 93, 979 (2001).Google Scholar
12 Blamey, R. W. Ellis, I. O. Pinder, S. E. Lee, A. H. S. Macmillan, R. D. Morgan, D. A. L. Robertson, J. F. R. Mitchell, M. J. Ball, G. R. Haybittle, J. L. and Elston, C. W. Eur. J. Cancer., 43, 1548 (2007).Google Scholar
13 Ravdin, P. M. Siminoff, L. A. Davis, G. J. Mercer, M. B. Hewlett, J., Gerson, N. and Parker, H. L. J. Clin. Oncol., 19, 980 (2001).Google Scholar
14 Early Breast Cancer Trialists' Collaborative Group, Lancet, 365, 1687(2005).Google Scholar
15 Chen, L. D. Y, Y. Li, HY, Yuan, DW, Pang. Quantum dots and their applications in cancer research Ai Zheng. 2006 May;25(5):651–6. [Article in Chinese]Google Scholar
16 Nida, D.L. Rahman, M. S. Carlson, K. D. Richards-Kortum, R., Follen, M., Fluorescent nanocrystals for use in early cervical cancer detection, Gynecol Oncol, 99 (3 Suppl 1): S8994 (2005).Google Scholar
17 Gu, W., Pellegrino, T., WJ, Parak, Boudreau, R, MA, Le Gros, Gerion, D, AP, Alivisatos, CA, Larabell, Quantum dot-based cell motility assay, Sci STKE, 2005(290)l5 (2008).Google Scholar
18 Sharrna, P., Brown, S., Walter, G., Santra, S., Moudgil, B., Nanoparticles for bioimaging. Adv Colloid Interface Sci, 123:471–85 (2006).Google Scholar
19 He, J., VanBrocklin, H. F. Franc, B. L. Seo, Y., Jones, E. F. Nanoprobes for medical diagnostics: current status of nanotechnology in molecular imaging, Curr Nanosci 4:1729 (2008).Google Scholar
20 Burns, A., H. Weisner, U., Fluorescent core-shell silica nanoparticles: towards qlab on a particleq architectures for nanobiotechnology. Chem Soc Rev, 35:1028–42 (2006).Google Scholar
21 Qian, X. M. Peng, X. H. Ansari, D. O. Yin-Goen, Q., Chen, G. Z. Shin, D. M. et al. In vivo tumor targeting and spectroscopic detection with surfaceenhanced Raman nanoparticle tags. Nat Biotechnol, 26:8390 (2008).Google Scholar
22 Leary, S.P. Liu, C.Y. Apuzzo, M.L.J.. Toward the emergence of nanoneurosurgery: Part II. Nanomedicine: diagnostics and imaging at the nanoscale level. Neurosurgery, 58:805–22(2006).Google Scholar
23 Kobayashi, H., Ogawa, M., Kosaka, N., Choyke, PL, Urano, Y.. Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimerbased optical agents. Nanomed. 4(4):411–9 (2009).Google Scholar
24 Zhang, H., Zeng, X, Li, Q, Gaillard-Kelly, M, CR, Wagner, Yee, D. Fluorescent tumour imaging of type I IGF receptor in vivo: comparison of antibody-conjugated quantum dots and smallmolecule fluorophore. Br J Cancer. 7;101(1):71–9 (2009).Google Scholar
25 Manzoor, K., Johny, S, Thomas, D, Setua, S, Menon, D, Nair S. Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology. 20(6):65102 (2009).Google Scholar
26 Ko, MH, Kim, S, WJ, Kang, JH, Lee, Kang, H, SH, Moon, Hwang do, W, HY, Ko, DS, Lee. In vitro derby imaging of cancer biomarkers using quantum dots. Small. 5(10):1207–12 (2009).Google Scholar
27 Ghasemi, Y., Peymani, P, Afifi S., Quantum dot: magic nanoparticle for imaging, detection and targeting, Acta Biomed. 80(2):156–65 (2009).Google Scholar
28 J, J. Bange, Zwick, E, Ullrich, A., Molecular targets for breast cancer therapy and prevention. Nature Medicine 7: 548552 (2001).Google Scholar
29 Ménard, S., Pupa, S. M. Campiglio, M., Tagliabue, E, “Biologic and therapeutic role of HER2 in cancer”. Oncogene 22: 65706578 (2003).Google Scholar
30 Kute, T; CM, Lack, Willingham, M, Bishwokama, B, Williams, H, Barrett, K, Mitchell, T, JP, Vaughn. “Development of herceptin resistance in breast cancer cells”. Cytometry 57A: 8693 (2004).Google Scholar
31 Chen, H., Xue, J., Zhang, Y., Zhu, X., Gao, J., Yu., B. Comparison of quantum dots immunofluorescence histochemistry and conventional immunohistochemistry for the detection of caveolin-1 and PCNA in the lung cancer tissue microarray. J Mol Histol. Nov 12, advance print (2009).Google Scholar
32 Xu, H., Aguilar, Z. P. Dixon, J., Jones, B., Wang, A., Wei, H., “Breast Cancer Cell Imaging using Semiconductor Quantum Dots”, in the “First International Symposium on Semiconductor and Plasmonics-Active Nanostructures for Photonic Devices and Systems”, Vienna, Austria, ECS Transactions, 25 (11) 6977 (2009).Google Scholar
33 Xu, H., Aguilar, Z. P. Waldron, J. L. Wei, H., and Wang, Y. A.Application of Semiconductor Quantum Dots for Breast Cancer Cell Sensing,” Biomedical Engineering and Informatics, IEEE Computer Society, BMEI, 1:516520 (2009).Google Scholar