Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-2c279 Total loading time: 0.262 Render date: 2023-01-27T09:38:45.700Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue false

Self-protective Oxide Nano-Coatings for Enhanced Surface Biocompatibility of Titanium

Published online by Cambridge University Press:  28 April 2015

Zeynep Ozdemir
Affiliation:
Ozyegin University, Department of Mechanical Engineering, Nisantepe Mevki, Orman Sokak, No 13, Alemdag, Cekmekoy, 34794, Istanbul, TURKEY
Valentin Craciun
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Romania
Bahar Basim
Affiliation:
Ozyegin University, Department of Mechanical Engineering, Nisantepe Mevki, Orman Sokak, No 13, Alemdag, Cekmekoy, 34794, Istanbul, TURKEY
Get access

Abstract

The biocompatibility of an implant material depends on the bulk physical properties in addition to the surface properties. In biomedical engineering and industry Ti and Ti-alloys are very popular biological implant material for their bulk physical properties and strength to weight ratio resembling those of nature bone. It is possible to modify the surface properties of titanium for enhanced surface biocompatibility. The main objective of the this study is to engineer a smart Ti-based prosthesis surface by self induced chemically modified titanium oxide nano-film by the chemical mechanical polishing process (CMP). This new process applied on bio-implants aims at significantly reducing the out-diffusion of Ti and other metallic impurities from prosthesis in contact with body fluids and tissue and simultaneously enhancing the surface mechanical, chemical and biological properties. CMP technique enables the growth of a thicker and denser self-protective native oxide on Ti and Ti alloy samples, while simultaneously inducing a controlled surface roughness. It is demonstrated that the Ti based dental implants with self-protective oxide induced surfaces help minimize chemical and bacterial reactivity in addition to Ti ion dissolution while promoting their biocompatibility through surface patterning. The studied self-protective oxide films can also be utilized for many additional applications including bio-sensors.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shirkhanzadeh, M., Azadegan, M., Liu, G. Q., Mater. Lett., 24, 712, (1995).CrossRef
Shibata, K, Kamegai, A. Titanium in dentistry: Biocompatibility of titanium. Quintessence, Tokyo, pp.3541,(1988).Google Scholar
Miyakawa, O, Okawa, S, Kobayashi, M, Uematsu, K. Surface contamination of titanium by abrading treatment. Dent in Japan; 34 F9096, (1998).Google Scholar
Akhter, R, Okawa, S, Nakano, S, Kobayashi, M, Miyakawa, O. Surface composition and structure of titanium polished with aqueous slurry of ferric oxide. Dent Mater J; 19: 1021, (2000).CrossRefGoogle ScholarPubMed
Basim, G.B., Vakarelski, I.U., Brown, S., Moudgil, B.M., The Journal of Dispersion Science and Technology, 24, 3, 499515, (2003).CrossRef
Chathapuram, V.S., Du, T., Sundaram, K.B., Desai, V., Microelectronic Engineering 65,478488, (2003).CrossRef
Okawa, S., Watanabe, K., Dental Materials Journal, 28-1, 6874, (2009).CrossRef
Variola, F., Yi, J-H, Richert, L., Wuest, J.D, Rosei, F., Nanci, A., Biomaterials, 29, 12851298, (2008).CrossRef
Jouanny, I., Labdi, S., Aubert, P., Buscema, C., Aciejak, O., Berger, M-H., Guipont, V., Jeandin, M., Thin Solid Films, 518, 32123217, (2010).CrossRef
Kurella, A., Dahotre, N.B., Journal of Biomaterials Applications, 20 ,450, (2005).CrossRef
Martinez, E., Engel, E., Planell, J.A., Samiteier, J., Annals of Anatomy, 191,126135, (2009).CrossRef
Ozdemir, Z., Orhan, O., Bebek, O., Basim, G.B., 225th ECS Meeting, (2014).

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Self-protective Oxide Nano-Coatings for Enhanced Surface Biocompatibility of Titanium
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Self-protective Oxide Nano-Coatings for Enhanced Surface Biocompatibility of Titanium
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Self-protective Oxide Nano-Coatings for Enhanced Surface Biocompatibility of Titanium
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *