Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-25T16:01:37.218Z Has data issue: false hasContentIssue false

Self-Consistent Tight-Binding Methods Applied to Semiconductor Nanostructures

Published online by Cambridge University Press:  10 February 2011

Aldo Di Carlo*
Affiliation:
INFM-Dipartimento di Ingegneria Elettronica, Università di Roma “Tor Vergata”, 00133 Roma, Italy, dicarlo@eln.utovrm.it
Get access

Abstract

A self-consistent tight-binding approach applied to semiconductor nanostructure is presented. This allows us to describe electronic and optical properties of nanostructured devices beyond the usual envelope function approximation. Example of applications are given for High Electron Mobility Transistors (HEMTs) and non-linear optical devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wood, D. M., Wei, S.-H., and Zunger, Alex, Phys. Rev. B37, 1342 (1988);Google Scholar
Park, C. H. and Chang, K. J., Phys. Rev. B47, 12709 (1993).Google Scholar
2. Bastard, G., Wave mechanics applied to semiconductor heterostructures, Les Edition de Physique, Les Ulis Cedex, 1988.Google Scholar
3. Morkoç, H., Unlu, H., Ji, G., Principles and Technology of MODFETS, John Wiley & Sons, Chichester, 1991.Google Scholar
4. Slater, J. C., Koster, G. F., Phys. Rev. 94, 1498 (1954);Google Scholar
Bullet, D. W., Solid State Physics, 35, 129 (1980);Google Scholar
Majewski, J. A., Vogl, P., The structure of binary compounds edited by de Boer, F. R. and Pettifor, D. G., Elsevier, Amsterdam, 1989.Google Scholar
5. Boykin, T.B., van der Wagt, J.P.A., and Harris, J.S., Phys. Rev. B43, 4777 (1991).Google Scholar
6. Di Carlo, A., Lugli, P., Semicon. Sci. Technol. 10, 1673 (1995).Google Scholar
7. Schulman, J. N., Chang, Y. C., Phys. Rev. B31, 2056 (1985).Google Scholar
8. Zunger, A., Yeh, C.-Y., Wang, L.-W., Zang, S. B., Proceedings ICPS–22, 1763 (1994).Google Scholar
9. Di Carlo, A., Pescetelli, S., Paciotti, M., Lugli, P., Graf, M., Solid State Communications 98, 803 (1996)Google Scholar
10. Di Carlo, A., Vogl, P., and Pötz, W., Phys. Rev. B50, 8358 (1994).Google Scholar
11. Froyen, S., Phys. Rev. B39, 3168 (1989).Google Scholar
12. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D., LAPACK User's Guide. SIAM, Philadelphia, 1992.Google Scholar
13. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical recipes, Cambrige University Press, 1986.Google Scholar
14. Graf, M. and Vogl, P., Phys. Rev. B51, 4940 (1995).Google Scholar
15. Priester, C., Allan, G., Lannoo, M., Phys. Rev B 37, 8519 (1988); 38, 9870 (1988); 38, 13451 (1988);Google Scholar
Foulon, Y., Priester, C., Phys. Rev. B 44 5889 (1991).Google Scholar
16. Aniel, F., Boucaud, P., Sylvestre, A., Crozat, P., Julien, F. H., Adde, R., and Jin, Y., J. App. Phys. 77, 2184 (1995): N. Shigekawa, T. Enoki, T. Furuta, and H. ItoGoogle Scholar
17. Reale, A., Di Carlo, A., and Lugli, P., VLSI-design, in press (1997)Google Scholar
18. Reale, A., Di Carlo, A., and Lugli, P., In Proc. V-European Gallium Arsenide and related III-V compound: Application symposium (GAAS 97) Bologna, Italy, 1997, pag. 305 Google Scholar