Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T22:39:07.895Z Has data issue: false hasContentIssue false

Segregation and Trapping of Erbium in Silicon at a Crystal-Amorphous or Crystal-Vacuum Interface

Published online by Cambridge University Press:  10 February 2011

A. Polman
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, polman@amolf.nl
R. Serna
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, polman@amolf.nl
J. S. Custer
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, polman@amolf.nl
M. Lohmeier
Affiliation:
FOM Institute for Atomic and Molecular Physics Kruislaan 407, 1098 SJ Amsterdam, the Netherlands, polman@amolf.nl
Get access

Abstract

The incorporation of erbium in silicon is studied during solid phase epitaxy (SPE) of Erimplanted amorphous Si on crystalline Si, and during Si molecular beam epitaxy (MBE). Segregation and trapping of Er is observed on Si(100), both during SPE and MBE. The trapping during SPE shows a discontinuous dependence on Er concentration, attributed to the effect of defect trap sites in the amorphous Si near the interface. Trapping during MBE is described by a continuous kinetic growth model. Above a critical Er density (which is lower for MBE than for SPE), growth instabilities occur, attributed to the formation of silicide precipitates. No segregation occurs during MBE on Si(111), attributed to the epitaxial growth of silicide precipitates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 see e.g. Rare Earth Doped Semiconductors, edited by Pomrenke, G.S., Klein, P.B., and Langer, D.W. (Mater. Res. Soc. Proc. 301, Pittsburgh, PA, 1993), and this Proceedings.Google Scholar
2 Trumbore, F.A., Bell. Syst. Techn. J 39, 205 (1960).Google Scholar
3 Xie, Y.H., Fitzgerald, E.A., and Mii, Y.J., J. Appl. Phys. 70, 3223 (1991).Google Scholar
4 Custer, J.S., Polman, A., and Pinxteren, H.M. van, J. Appl. Phys. 75, 2809 (1994).Google Scholar
5 Polman, A., Custer, J.S., Zagwijn, P.M., Molenbroek, A.M., and Alkemade, P.F.A., submitted to J. Appl. Phys.Google Scholar
6 Roorda, S. et al., Phys. Rev. B 44, 3702 (1991).Google Scholar
7 Polman, A. et al. Appl. Phys. Lett. 57, 1230 (1990).Google Scholar
8 Coffa, S., Poate, J.M., Jacobson, D.C., and Polman, A., Appl. Phys. Lett. 58, 2916 (1991).Google Scholar
9 Andrieu, S., d'Avitaya, F. Arnaud, and Pfister, J.J., J. Appl. Phys. 65, 2687 (1989).Google Scholar
10 Knapp, J.A., and Picraux, S.T., Appl. Phys. Lett. 48, 466 (1986).Google Scholar
11 Efeogiu, H. et al., Mater. Res. Soc. Proc. 220, 367 (1991).Google Scholar
12 Miyashita, K., Shiraki, Y., Houghton, D.C., and Fukatsu, S., Appl. Phys. Lett. 67, 235 (1995).Google Scholar
13 Polman, A., Custer, J.S., Snoeks, E., and Hoven, G.N. van den, Appl. Phys. Lett. 62, 507 (1993).Google Scholar
14 Coffa, S., Priolo, F., Franzò, G., Bellani, V., Camera, A., and Spinella, C., Phys. Rev. B 48, 11782 (1993).Google Scholar
15 Serna, R., Lohmeier, M., Zagwijn, P.M., Vlieg, E., and Polman, A., Appl. Phys. Lett. 66, 1385 (1995).Google Scholar
16 Matsuoka, M., and Tohno, S., J. Appl. Phys. 78, 2751 (1995).Google Scholar