Skip to main content Accessibility help
×
Home
Hostname: page-component-5f95dd588d-8fg7t Total loading time: 0.217 Render date: 2021-10-28T22:06:42.956Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Scanning Thermal Lithography as a Tool for Highly Localized Nanoscale Chemical Surface Functionalization

Published online by Cambridge University Press:  04 February 2011

Joost Duvigneau
Affiliation:
Department of Materials Science and Technology of Polymers, University of Twente, MESA+ Institute for Nanotechnology, Postbus 217, 7500 AE, Enschede, The Netherlands.
Holger Schönherr
Affiliation:
Department of Physical Chemistry I, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany.
G. Julius Vancso
Affiliation:
Department of Materials Science and Technology of Polymers, University of Twente, MESA+ Institute for Nanotechnology, Postbus 217, 7500 AE, Enschede, The Netherlands.
Get access

Abstract

We report on Scanning Thermal Lithography (SThL), a recently introduced lithographic tool, for local thermochemistry on tert-butyl acrylate based polymer films featuring chemical cross links. The tailored polymer films afford platforms for controlled high molecular density coupling and surface immobilization of biologically relevant molecules, such as proteins. The thermally labile tert-butyl ester groups in tert-butyl acrylate based polymer films can be cleaved in air at temperatures above 150 °C to yield carboxylic acid functional groups for further (bio)- conjugation. The films were optimized to avoid plastic deformation at the elevated temperatures used during SThL. Exploiting these properties patterns with length scales as small as 35 ± 6 nm have been successfully thermally activated with SThL. Hence SThL comprises an attractive approach for the development of e.g. (bio)sensors and platforms for cell surface interaction studies with nanoscale patterns.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Szoszkiewicz, R., Okada, T., Jones, S. C., Li, T. D., King, W. P., Marder, S. R., Riedo, E. , Nano Lett. 7, 1064 (2007).CrossRefGoogle Scholar
2. Duvigneau, J., Schönherr, H., Vancso, G. J. , Langmuir 24, 10825 (2008).CrossRefGoogle Scholar
3. Duvigneau, J., Cornelissen, S., Valls, N. B., Schönherr, H., Vancso, G. J. , Adv. Funct. Mater. 20, 460 (2010).CrossRefGoogle Scholar
4. Odian, G. , Principles of Polymerization, 3rd ed. (John Wiley & Sons Inc., 1991), p. 692.Google Scholar
5. Wang, D. B., Kodali, V. K., Underwood, W. D., Jarvholm, J. E., Okada, T., Jones, S. C., Rumi, M., Dai, Z. T., King, W. P., Marder, S. R., Curtis, J. E., Riedo, E. , Adv. Funct. Mater. 19, 3696 (2009).CrossRefGoogle Scholar
6. Lantz, M. A., Gotsmann, B., Dürig, U. T., Vettiger, P., Nakayama, Y., Shimizu, T., Tokumoto, H. , Appl. Phys. Lett. 83, 1266 (2003).CrossRefGoogle Scholar
7. Fletcher, P. C., Felts, J. R., Dai, Z. T., Jacobs, T. D., Zeng, H. J., Lee, W., Sheehan, P. E., Carlisle, J. A., Carpick, R. W. , W. P. ACS Nano 4, 3338 (2010).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Scanning Thermal Lithography as a Tool for Highly Localized Nanoscale Chemical Surface Functionalization
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Scanning Thermal Lithography as a Tool for Highly Localized Nanoscale Chemical Surface Functionalization
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Scanning Thermal Lithography as a Tool for Highly Localized Nanoscale Chemical Surface Functionalization
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *