Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-jzjqj Total loading time: 0.253 Render date: 2022-08-14T16:47:26.855Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Room temperature 1.3–1.55 μm laser-like emission from Ge/Si self-assembled islands in Si-based photonic crystals

Published online by Cambridge University Press:  01 February 2011

J-M. Lourtioz
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
S. David
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
M. El Kurdi
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
C. Kammerer
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
X. Li
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
S. Sauvage
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
A. Chelnokov
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
V. Le Thanh
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
D. Bouchier
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
P. Boucaud
Affiliation:
Institut d'Electronique Fondamentale, UMR 8622 du CNRS, Université Paris-Sud, Bâtiment 220 - 91405 Orsay -France
Get access

Abstract

Experimental results are reported on various guided optic configurations that combine silicon-based photonic crystals (PC) and Ge/Si quantum island emitters. The feasibility of low-refractive-index-contrast PC waveguides by inductively-coupled-plasma (ICP) etching of buried SiGe/Si waveguides is briefly recalled from a previous work. The main body of the paper is focused on experiments that were carried out on the high-refractive-index-contrast silicon-on-insulator (SOI) system. Self-assembled Ge/Si quantum island layers were deposited on a SOI substrate that was further processed to get two-dimensional PC microcavities and waveguides. The room temperature 1.3–1.55 μm emission from Ge/Si islands is shown to be significantly enhanced in PC microcavities, the strongest enhancement being obtained with the smallest (micropillar-like) cavities surrounded by wide pores. In this latter case, the room-temperature photoluminescence amplitude is more than two-orders of magnitude larger than that of Ge/Si islands grown in unprocessed samples. A superlinear (laser-like) dependence with the optical pumping is observed in the same time. This behavior and other experimental trends would incriminate both a high carrier concentration of the photo-created electron-hole plasma and a good vertical coupling efficiency of the micro-structured silicon. A first attempt to characterize linear PC waveguides is also reported using the wideband luminescence of Ge/Si islands embedded in the guides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chelnokov, A., David, S., Wang, K., Marty, F., and Lourtioz, J-M., IEEE Journ. Select. Topics in Quantum Electron. 8, 919 (2002).CrossRefGoogle Scholar
2. Schilling, J., Müller, F., Matthias, S., Wehrsporn, R.B., Gösele, U., Busch, K., Appl. Phys. Lett. 78, 1180, (2001).CrossRefGoogle Scholar
3. Notomi, M., Shinya, A., Yamada, K., Takahashi, J.-I., Takahashi, C., and Yokohama, I., IEEE J. Quantum Electron. 38, 736 (2002).CrossRefGoogle Scholar
4. Arentoft, J., Sondergaard, T., Kristensen, M., Boltasseva, A., Thorhauge, M., and Frandsen, L., Electron. Letters 38, 274 (2002).CrossRefGoogle Scholar
5. Castagna, M.E., Coffa, S., Caristia, L., Messina, A., ESSDERC Proc., 439 (2002).Google Scholar
6. Brunhes, T., Boucaud, P., Sauvage, S., Aniel, F., Lourtioz, J.-M., Hernandez, C., Campidelli, Y., Bensahel, D., Faini, G., Sagnes, I., Appl. Phys. Lett. 77, 1822 (2000).CrossRefGoogle Scholar
7. benisty, H., Lalanne, P., Olivier, S., Rattier, M., Weisbuch, C., Smith, C.J.M., Krauss, T.F., Jouanin, C., and Cassagne, D., Optical and Quantum Electronics 34, 205 (2002)CrossRefGoogle Scholar
8. Rowson, S., Chelnokov, A., and Lourtioz, J-M., J. Lightwave Technol. 99, 1989 (1999).CrossRefGoogle Scholar
9. Le Thanh, V., Yam, V., Boucaud, P., Fortuna, F., Ulysse, C., Bouchier, D., Vervoort, L., and Lourtioz, J. M., Phys. Rev. B 60, 5851 (1999).CrossRefGoogle Scholar
10. Benisty, H., Weisbuch, C., Labilloy, D., Rattier, M., Smith, C. J. M., Krauss, T. F., De la Rue, R. M., Houdre, R., Oesterle, U., Jouanin, C., and Cassagne, D., J. Lightwave Technol. 17, 2063 (1999).CrossRefGoogle Scholar
11. David, S., El Kurdi, M., Boucaud, P., Chelnokov, A., Le Thanh, V., Bouchier, D., and Lourtioz, J-M., Appl. Phys. Lett. 83, 2509 (2003).CrossRefGoogle Scholar
12. Boroditsky, M., Krauss, T.F., Coccioli, R., Vrijen, R., Bhat, R., and Yablonovitch, E., Appl. Phys. Lett. 75, 1036 (1999).CrossRefGoogle Scholar
13. Delbeke, D., Bockstaele, R., Bienstman, P., Baets, R., and Benisty, H., IEEE J. Select. Topics Quantum Electron. 8, 189 (2002).CrossRefGoogle Scholar
14. Smith, C.J.M., Krauss, T.F., Benisty, H., Rattier, M., Weisbuch, C., Oesterle, U., and Houdre, R., J. Opt. Soc. Am. B 17, 2043, (2000).CrossRefGoogle Scholar
15. El Kurdi, M., PhD thesis, Orsay, France (2003).Google Scholar
16. Guidotti, D., Batchelder, J. S., Finkel, A., and Van Vecheten, J. A., Phys. Rev. B 38, 1569 (1988).CrossRefGoogle Scholar
17. Liu, C. W., Lee, M. H., Chen, M.-J., Lin, I. C., and Lin, C.-F., Appl. Phys. Lett. 76, 1516 (2000).CrossRefGoogle Scholar
18. Sveinbjörnsson, E. O., and Weber, J., Appl. Phys. Lett. 69, 2686 1996).CrossRefGoogle Scholar
19. Tajima, M., and Ibuka, S., Journal of Applied Phys. 84, 2224 (1998).CrossRefGoogle Scholar
20. Sernelius, B. E., Phys. Rev. B 39, 10825 (1989).CrossRefGoogle Scholar
21. Baier, T., Mantz, U., Thonke, K., Sauer, R., Schäffler, F., and Herzog, H. J., Phys. Rev. B 50, 15191 (1994).CrossRefGoogle Scholar
22. Hulin, D., Combescot, M., Bok, J., Migus, A., Vinet, J.Y., and Antonetti, A., Phys. Rev. Lett. 52, 1998 (1984).CrossRefGoogle Scholar
23. Zelsmann, M., Picard, E., Charvolin, T., Hadji, E., Dal'zotto, B., Nier, M., Seassal, C., Rojo-Romeo, P., and Letartre, X., Appl. Phys. Lett. 81, 2340 (2002).CrossRefGoogle Scholar
24. Labilloy, D., Benisty, H., Weisbuch, C., Smith, C.J.M, Krauss, T.F., Houdre, R., Oesterle, U., Phys. Rev. B 59, 1649 (1999).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Room temperature 1.3–1.55 μm laser-like emission from Ge/Si self-assembled islands in Si-based photonic crystals
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Room temperature 1.3–1.55 μm laser-like emission from Ge/Si self-assembled islands in Si-based photonic crystals
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Room temperature 1.3–1.55 μm laser-like emission from Ge/Si self-assembled islands in Si-based photonic crystals
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *