Hostname: page-component-594f858ff7-wfvfs Total loading time: 0 Render date: 2023-06-06T10:54:17.468Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Role of Boron TED and Series Resistance in SiGe/Si Heterojunction pMOSFETs

Published online by Cambridge University Press:  31 January 2011

Yonghyun Kim
Affiliation:
erogen@gmail.com, The University of Texas at Austin, Austin, Texas, United States
Chang Yong Kang
Affiliation:
chang.yong.kang@sematech.org, SEMATECH, Austin, Texas, United States
Se-Hoon Lee
Affiliation:
seho2@hanmail.net, The University of Texas at Austin, Austin, Texas, United States
Prashant Majhi
Affiliation:
Prashant.Majhi@SEMATECH.Org, SEMATECH, Austin, Texas, United States
Byoung-Gi Min
Affiliation:
mincreep@gmail.com, JUSUNG America Inc., Round Rock, Texas, United States
Ki-Seung Lee
Affiliation:
mincree@gmail.com, JUSUNG America Inc., Round Rock, Texas, United States
Donghwan Ahn
Affiliation:
donghwan.ahn@mer.utexas.edu, The University of Texas at Austin, Austin, Texas, United States
Sanjay K. Banerjee
Affiliation:
anupam@uts.cc.utexas.edu, The University of Texas at Austin, Austin, Texas, United States
Get access

Abstract

We investigate boron transient enhanced diffusion (TED) and series resistance in SiGe/Si heterojunction channel pMOSFET. The stress gradient at the SiGe/Si interface near the gate edge in high Ge concentrations are found to determine boron TED as well as extension junction shape, which has a significant impact on the parasitic LDD and source/drain (S/D) series resistance. In addition, high Ge concentrations in the epitaxial SiGe layer on top of Si substrate result in a high sheet resistance during a 1000°C/5s rapid thermal processing (RTP), which is mainly due to alloy scattering and interface roughness scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ghani, T., Amstrong, M., Auth, C., Bost, M., Chavat, P., Glass, G., Hoffman, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murthy, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S., and Bohr, M., in IEDM Tech. Dig., 1161 (2003).Google Scholar
[2] G. O'Neill, A. and Antoniadis, A. D., IEEE Trans. Electron Devices 43, 911 (1996).CrossRefGoogle Scholar
[3] Rim, K., L. Hoyt, J., and Gibbons, J. F., IEEE Trans. Electron Devices 47, 1406 (2000).CrossRefGoogle Scholar
[4] Lee, S., Majhi, P., Oh, J., Sassman, B., Young, C., Bowoner, A., Loh, W., Choi, K., Cho, B., Lee, H., Kirsch, P.. Harris, H., Tsai, W., Datta, S., Tseng, H., Banerjee, S. K., and Jammy, R., IEEE Electron Device Lett. 29, 1017 (2008).CrossRefGoogle Scholar
[5] People, R., IEEE J. Quantum Electron 22, 1696 (1986).CrossRefGoogle Scholar
[6] Welser, J. J., Hoyt, J. L., and Gibbons, J. F., IEEE Electron Device Lett. 15, 100 (1994).CrossRefGoogle Scholar
[7] Wang, G. H., Toh, E., Du, A., Lo, G., Samudra, G., and Yeo, Y., IEEE Trans. Electron Devices 29, 77 (2008).CrossRefGoogle Scholar
[8] Kim, S., Park, C., and Woo, J. C. S., IEEE Trans. Electron Devices 49, 467 (2002).CrossRefGoogle Scholar
[9] Kim, S., Park, C., and Woo, J. C. S., IEEE Trans. Electron Devices 49, 1748 (2002).CrossRefGoogle Scholar
[10] Ranade, P., Takeuchi, H., Lee, W., Subramanian, V., and King, T., IEEE Trans. Electron Devices 49, 1436 (2002).CrossRefGoogle Scholar
[11] King, T. J., McVittie, J., Saraswat, K. C., and Pfiester, J. R., IEEE Trans. Electron Devices 41, 228 (1994).CrossRefGoogle Scholar
[12] Thompson, P. E., Crosby, R., Bennet, J., and Felch, S., J. Vac. Sci. Technol. B 22(5), 2333 (2004).CrossRefGoogle Scholar
[13] Park, J., Huh, Y., and Hwang, H., Appl. Phys. Lett. 74, 1248 (1999).CrossRefGoogle Scholar
[14] Cowern, N. E. B., Colombeau, B., Benson, J., Smith, A. J., Lerch, W., Paul, S., Graf, T., Cristiano, F., Hebras, X., and Bolze, D., Appl. Phys. Lett. 86, 101905 (2005).CrossRefGoogle Scholar
[15] Impellizzeri, G., Mirabella, S., Piro, A. M., Grimaldi, M. G., Priolo, F., Giannazzo, F., Raineri, V., Napolitani, E., and Carnera, A., Appl. Phys. Lett. 91, 132101 (2007).CrossRefGoogle Scholar
[16] Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S. K., and Tasch, A., J. Elec. Mat. 19, 1027 (1990).CrossRefGoogle Scholar
[17] Li, C., John, S., Quinones, E., and Banerjee, S. K., J. Vac. Sci. Tech. A 14, 170 (1996).CrossRefGoogle Scholar
[18] People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).CrossRefGoogle Scholar
[19] Yuan, T. and Tak, H.N., Fundamentals of modern VLSI devices. 1998: Cambridge University Press. 469.Google Scholar
[20] Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., and Lefforge, D., Appl. Phys. Lett. 66, 580 (1995).CrossRefGoogle Scholar
[21] Zangenberg, N. R., Fage-Pedersen, J., and Hansen, J. L., J. Appl. Phys. 94, 3883 (2003).CrossRefGoogle Scholar
[22] Dunham, S., Diebel, M., Ahn, C., and Shih, C., J. Vac. Sci. & Tech. 24, 456 (2006).CrossRefGoogle Scholar
[23] Lin, L., Kirichenko, T., Sahu, B. R., Hwang, G. S., and Banerjee, S. K., Phy. Rev. B 72, 205206 (2005).CrossRefGoogle Scholar
[24] Xia, G., Olubuyide, O., Hoyt, J. L., and Canonico, M., Appl. Phys. Lett. 88, 013507 (2006).CrossRefGoogle Scholar
[25] Sentaurus Process User Guide A-2008.09, Mountain View, Synopsys, 2008.Google Scholar
[26] Crosby, R. T., Jones, K. S., Law, M. E., Radic, L., Thompson, P. E., and Liu, J., Appl. Phys. Lett. 87, 192111 (2005).CrossRefGoogle Scholar