Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-dkwk2 Total loading time: 0.216 Render date: 2021-07-30T05:46:42.820Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Role of Boron TED and Series Resistance in SiGe/Si Heterojunction pMOSFETs

Published online by Cambridge University Press:  31 January 2011

Yonghyun Kim
Affiliation:
erogen@gmail.com, The University of Texas at Austin, Austin, Texas, United States
Chang Yong Kang
Affiliation:
chang.yong.kang@sematech.org, SEMATECH, Austin, Texas, United States
Se-Hoon Lee
Affiliation:
seho2@hanmail.net, The University of Texas at Austin, Austin, Texas, United States
Prashant Majhi
Affiliation:
Prashant.Majhi@SEMATECH.Org, SEMATECH, Austin, Texas, United States
Byoung-Gi Min
Affiliation:
mincreep@gmail.com, JUSUNG America Inc., Round Rock, Texas, United States
Ki-Seung Lee
Affiliation:
mincree@gmail.com, JUSUNG America Inc., Round Rock, Texas, United States
Donghwan Ahn
Affiliation:
donghwan.ahn@mer.utexas.edu, The University of Texas at Austin, Austin, Texas, United States
Sanjay K. Banerjee
Affiliation:
anupam@uts.cc.utexas.edu, The University of Texas at Austin, Austin, Texas, United States
Get access

Abstract

We investigate boron transient enhanced diffusion (TED) and series resistance in SiGe/Si heterojunction channel pMOSFET. The stress gradient at the SiGe/Si interface near the gate edge in high Ge concentrations are found to determine boron TED as well as extension junction shape, which has a significant impact on the parasitic LDD and source/drain (S/D) series resistance. In addition, high Ge concentrations in the epitaxial SiGe layer on top of Si substrate result in a high sheet resistance during a 1000°C/5s rapid thermal processing (RTP), which is mainly due to alloy scattering and interface roughness scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ghani, T., Amstrong, M., Auth, C., Bost, M., Chavat, P., Glass, G., Hoffman, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murthy, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S., and Bohr, M., in IEDM Tech. Dig., 1161 (2003).Google Scholar
[2] G. O'Neill, A. and Antoniadis, A. D., IEEE Trans. Electron Devices 43, 911 (1996).CrossRefGoogle Scholar
[3] Rim, K., L. Hoyt, J., and Gibbons, J. F., IEEE Trans. Electron Devices 47, 1406 (2000).CrossRefGoogle Scholar
[4] Lee, S., Majhi, P., Oh, J., Sassman, B., Young, C., Bowoner, A., Loh, W., Choi, K., Cho, B., Lee, H., Kirsch, P.. Harris, H., Tsai, W., Datta, S., Tseng, H., Banerjee, S. K., and Jammy, R., IEEE Electron Device Lett. 29, 1017 (2008).CrossRefGoogle Scholar
[5] People, R., IEEE J. Quantum Electron 22, 1696 (1986).CrossRefGoogle Scholar
[6] Welser, J. J., Hoyt, J. L., and Gibbons, J. F., IEEE Electron Device Lett. 15, 100 (1994).CrossRefGoogle Scholar
[7] Wang, G. H., Toh, E., Du, A., Lo, G., Samudra, G., and Yeo, Y., IEEE Trans. Electron Devices 29, 77 (2008).CrossRefGoogle Scholar
[8] Kim, S., Park, C., and Woo, J. C. S., IEEE Trans. Electron Devices 49, 467 (2002).CrossRefGoogle Scholar
[9] Kim, S., Park, C., and Woo, J. C. S., IEEE Trans. Electron Devices 49, 1748 (2002).CrossRefGoogle Scholar
[10] Ranade, P., Takeuchi, H., Lee, W., Subramanian, V., and King, T., IEEE Trans. Electron Devices 49, 1436 (2002).CrossRefGoogle Scholar
[11] King, T. J., McVittie, J., Saraswat, K. C., and Pfiester, J. R., IEEE Trans. Electron Devices 41, 228 (1994).CrossRefGoogle Scholar
[12] Thompson, P. E., Crosby, R., Bennet, J., and Felch, S., J. Vac. Sci. Technol. B 22(5), 2333 (2004).CrossRefGoogle Scholar
[13] Park, J., Huh, Y., and Hwang, H., Appl. Phys. Lett. 74, 1248 (1999).CrossRefGoogle Scholar
[14] Cowern, N. E. B., Colombeau, B., Benson, J., Smith, A. J., Lerch, W., Paul, S., Graf, T., Cristiano, F., Hebras, X., and Bolze, D., Appl. Phys. Lett. 86, 101905 (2005).CrossRefGoogle Scholar
[15] Impellizzeri, G., Mirabella, S., Piro, A. M., Grimaldi, M. G., Priolo, F., Giannazzo, F., Raineri, V., Napolitani, E., and Carnera, A., Appl. Phys. Lett. 91, 132101 (2007).CrossRefGoogle Scholar
[16] Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S. K., and Tasch, A., J. Elec. Mat. 19, 1027 (1990).CrossRefGoogle Scholar
[17] Li, C., John, S., Quinones, E., and Banerjee, S. K., J. Vac. Sci. Tech. A 14, 170 (1996).CrossRefGoogle Scholar
[18] People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).CrossRefGoogle Scholar
[19] Yuan, T. and Tak, H.N., Fundamentals of modern VLSI devices. 1998: Cambridge University Press. 469.Google Scholar
[20] Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., and Lefforge, D., Appl. Phys. Lett. 66, 580 (1995).CrossRefGoogle Scholar
[21] Zangenberg, N. R., Fage-Pedersen, J., and Hansen, J. L., J. Appl. Phys. 94, 3883 (2003).CrossRefGoogle Scholar
[22] Dunham, S., Diebel, M., Ahn, C., and Shih, C., J. Vac. Sci. & Tech. 24, 456 (2006).CrossRefGoogle Scholar
[23] Lin, L., Kirichenko, T., Sahu, B. R., Hwang, G. S., and Banerjee, S. K., Phy. Rev. B 72, 205206 (2005).CrossRefGoogle Scholar
[24] Xia, G., Olubuyide, O., Hoyt, J. L., and Canonico, M., Appl. Phys. Lett. 88, 013507 (2006).CrossRefGoogle Scholar
[25] Sentaurus Process User Guide A-2008.09, Mountain View, Synopsys, 2008.Google Scholar
[26] Crosby, R. T., Jones, K. S., Law, M. E., Radic, L., Thompson, P. E., and Liu, J., Appl. Phys. Lett. 87, 192111 (2005).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Role of Boron TED and Series Resistance in SiGe/Si Heterojunction pMOSFETs
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Role of Boron TED and Series Resistance in SiGe/Si Heterojunction pMOSFETs
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Role of Boron TED and Series Resistance in SiGe/Si Heterojunction pMOSFETs
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *