Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-hcslb Total loading time: 0.257 Render date: 2023-01-31T02:01:38.015Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Rigidity of Layered Random Alloys

Published online by Cambridge University Press:  21 February 2011

Wei Jin
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity Argonne National Laboratory, Argonne, IL 60439
S. D. Mahanti
Affiliation:
Department of Physics and Astronomy and Center for Fundamental Materials Research Michigan State University, East Lansing, MI 48824
M. F. Thorpe
Affiliation:
Department of Physics and Astronomy and Center for Fundamental Materials Research Michigan State University, East Lansing, MI 48824
Get access

Abstract

Randomly intercalated layered alloys are excellent models for two-dimensional microporous systems. We have studied the nonlinear gallery expansion and the gallery height fluctuations by constructing a double layer model that describes the layer rigidity and the size and stiffness of the intercalant species. Exact solutions, simulations and an effective-medium theory (EMT) results are compared. Applications of the results to ternary intercalation compounds are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Solin, S.A. and Zabel, H., Adv. Phys. 37, 87 (1988).CrossRefGoogle Scholar
2 Vegard, L., Z. Phys. 5,17 (1921).CrossRefGoogle Scholar
3 Kim, H., et. al., Phys. Rev. Lett. 60, 877 (1988).Google Scholar
4 Jin, W. and Mahanti, S.D., Phys. Rev. B 37, 8647 (1988).CrossRefGoogle Scholar
5 Lee, S., et. al., Phys. Rev. Lett. 62, 3066 (1989).CrossRefGoogle Scholar
6 Thorpe, M.F., Phys. Rev. B 39, 10370 (1989).CrossRefGoogle Scholar
7 Thorpe, M.F., Jin, W., and Mahanti, S.D., Phys. Rev. B 40, 10294 (1989).CrossRefGoogle Scholar
8 Cai, Y., et. al., Phys. Rev. B 42, 8827 (1990).CrossRefGoogle Scholar
9 Cai, Z.X., et. al., Phys. Rev. B 42, 6636 (1990).CrossRefGoogle Scholar
10 Pinnavaia, T.J., Science 220, 365 (1983).CrossRefGoogle Scholar
11 Komatsu, K., J. Phys. Soc. Japan, 6, 438 (1951).CrossRefGoogle Scholar
12 Garboczi, G. and Thorpe, M.F., Phys. Rev. B 31, 7276 (1985); 33, 3289 (1986).CrossRefGoogle Scholar
13 Feynman, R.P., Phys. Rev. 56, 340 (1939).CrossRefGoogle Scholar
14 Abraham, F.F. and Nelson, D.R., J. Phys. France 51, 2653 (1990).CrossRefGoogle Scholar
15 Fischer, J.E. and Kim, H.J., Phys. Rev. B 35, 3295 (1987); P.C. Chow and H. Zabel, Phys. Rev. B 38, 12837 (1988).CrossRefGoogle Scholar
16 Thorpe, M.F., Jin, W., and Mahanti, S.D., in Proceedings of Sir Roger Elliott Symposium, (to be published by Oxford University Press).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rigidity of Layered Random Alloys
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Rigidity of Layered Random Alloys
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Rigidity of Layered Random Alloys
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *