Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-fkkrz Total loading time: 0.181 Render date: 2021-06-17T09:43:09.150Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Reliability of Oxide Thin Film Transistors under the Gate Bias Stress with 400 nm Wavelength Light Illumination

Published online by Cambridge University Press:  27 June 2011

Soo-Yeon Lee
Affiliation:
School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Republic of Korea
Sun-Jae Kim
Affiliation:
School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Republic of Korea
Yongwook Lee
Affiliation:
School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Republic of Korea Samsung Electronics, Yongin-Si, Republic of Korea
Woo-Geun Lee
Affiliation:
Samsung Electronics, Yongin-Si, Republic of Korea
Kap-Soo Yoon
Affiliation:
Samsung Electronics, Yongin-Si, Republic of Korea
Jang-Yeon Kwon
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
Min-Koo Han
Affiliation:
School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Republic of Korea
Get access

Abstract

We have investigated the reliability of the inverted-staggered etch stopper structure oxide-based TFTs under negative gate bias stress combined with 400 nm wavelength light illumination and the relationship between the carrier concentration at the channel and the extent of Vth shift. It was found that the photo-induced holes cause the severe Vth degradation at the beginning of stress and the hole trapping rate of a single hole is not altered with the increase of the hole concentration. In oxide-based TFTs, the hole concentration at the channel is the determinant factor of the reliability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H., Science, 300, 1269 (2003).10.1126/science.1083212CrossRefGoogle Scholar
2. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H., Nature (London) 432, 488 (2004).10.1038/nature03090CrossRefGoogle Scholar
3. Fortunato, E., Barquinha, P., Pimentel, A., Goncalves, A., Margues, A., Pereira, L., and R. 4. Martins, Adv. Mater. (Weinheim, Ger.), 17, 590 (2005).Google Scholar
4. Yabuta, H., Sano, M., Abe, K., Aiba, T., Den, T., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H., Appl. Phys. Lett., 89, 112123 (2006).10.1063/1.2353811CrossRefGoogle Scholar
5. Suresh, A., Gollakota, P., Wellenius, P., Dhawan, A., and Muth, J. F., Thin Solid Films 516, 1326 (2008).10.1016/j.tsf.2007.03.153CrossRefGoogle Scholar
6. Barquinha, P., Pereira, L., Goncalves, G., Martins, R., and Fortunato, E., J. Electrochem. Soc., 156, H161 (2009).10.1149/1.3049819CrossRefGoogle Scholar
7. Kwon, J. Y., Son, K. S., Jung, J. S., Kim, T. S., Ryu, M. K., Park, K. B., Yoo, B. W., Kim, J. W., Lee, Y. G., Park, K. C., Lee, S. Y., and Kim, J. M., IEEE Electron Device Lett. 29, 1309 (2008).10.1109/LED.2008.2006637CrossRefGoogle Scholar
8. Park, J. S., Kim, T. S., Son, S., Jung, J. S., Lee, K.-H., Kwon, J.-Y., Koo, B., and Lee, S., IEEE Electron Device Lett. 31, 440 (2010).10.1109/LED.2010.2043050CrossRefGoogle Scholar
9. Lee, K.-H., Jung, J. S., Son, K. S., Park, J. S., Kim, T. S., Choi, R., Jeong, J. K., Kwon, J.-Y., Koo, B., and Lee, S., Appl. Phys. Lett. 95, 232106 (2009).10.1063/1.3272015CrossRefGoogle Scholar
10. Suresh, A., and Muth, J. F., Appl. Phys. Lett. 92, 033502 (2008).10.1063/1.2824758CrossRefGoogle Scholar
11. Hoshino, K., Hong, D., Chiang, H. Q., and Wager, J. F., IEEE Trans. Electron Devices, 56, 1365 (2009).10.1109/TED.2009.2021339CrossRefGoogle Scholar
12. Lopes, M. E., Gomes, H. L, Medeiros, M. C. R., Barquinha, P., Pereira, L., Appl. Phys. Lett. 95, 063502 (2009).10.1063/1.3187532CrossRefGoogle Scholar
13. Powell, M. J., Appl. Phys. Lett. 43, 597 (1983).10.1063/1.94399CrossRefGoogle Scholar
14. Ferris-Prabhu, A. V., IEEE Trans. Electron Devices ED-24, 524 (1977).10.1109/T-ED.1977.18772CrossRefGoogle Scholar
15. Grove, A. S., Physics and Technology of Semiconductor Devices (John Wiley and Sons, 1967) p. 128.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reliability of Oxide Thin Film Transistors under the Gate Bias Stress with 400 nm Wavelength Light Illumination
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Reliability of Oxide Thin Film Transistors under the Gate Bias Stress with 400 nm Wavelength Light Illumination
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Reliability of Oxide Thin Film Transistors under the Gate Bias Stress with 400 nm Wavelength Light Illumination
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *