Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-19T21:47:47.719Z Has data issue: false hasContentIssue false

Reductive Photopatterning of Phenylene-Vinylene-Based Polymers

Published online by Cambridge University Press:  21 March 2011

T. Kavc
Affiliation:
Institute for Chemistry and Technology of Organic Materials, Graz University of Technology, Graz, Austria
G. Langer
Affiliation:
Institute for Chemistry and Technology of Organic Materials, Graz University of Technology, Graz, Austria
W. Kern
Affiliation:
Institute for Chemistry and Technology of Organic Materials, Graz University of Technology, Graz, Austria To whom all should be adressed
A. Ruplitsch
Affiliation:
Institute for Chemistry and Technology of Organic Materials, Graz University of Technology, Graz, Austria
K. Mahler
Affiliation:
Institute for Chemistry and Technology of Organic Materials, Graz University of Technology, Graz, Austria
F. Stelzer
Affiliation:
Institute for Chemistry and Technology of Organic Materials, Graz University of Technology, Graz, Austria
G. Hayn
Affiliation:
Institute for Chemistry and Technology of Organic Materials, Graz University of Technology, Graz, Austria
R. Saf
Affiliation:
Institute for Chemistry and Technology of Organic Materials, Graz University of Technology, Graz, Austria
E.J.W. List
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Graz, Austria
E. Zojer
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Graz, Austria
M. T. Ahmed
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Graz, Austria Affiliation: Mansoura University, Mansoura 35516, Egypt
A. Pogantsch
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Graz, Austria
K.F. Iskra
Affiliation:
Institute for Experimental Physics, Graz University of Technology, Graz, Austria
T. Neger
Affiliation:
Institute for Experimental Physics, Graz University of Technology, Graz, Austria
H.-H. Hörhold
Affiliation:
Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Germany
H. Tillmann
Affiliation:
Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Germany
G. Kranzelbinder
Affiliation:
Ecole Normale Superieure de Cachan LPQM, Cachan, France
E. Toussaere
Affiliation:
Ecole Normale Superieure de Cachan LPQM, Cachan, France
G. Jakopic
Affiliation:
Joanneum Institute of Nanostructured Materials and Photonics, Weiz, Austria
Get access

Abstract

Photochemical methods were developed to obtain a variation of the refractive index in aromatic polymer surfaces and a change in the photoluminescence characteristics of phenylene-vinylene-based polymers. Films of aromatic polymers, among them polystyrene (PS), poly(2-vinylnaphthalene) (PVN) and derivatives of poly(-phenylene-vinylene) (PPV) were UV irradiated in the presence of gaseous hydrazine (N2H4). The photoreaction led to a strongreduction of the refractive index of the polymers due to a hydrogenation of the aromatic units. In the case of PPV, we observed reductive photobleaching. This new technique was employed to produce photogenerated patterns in PPV. The results are compared to oxidative bleaching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Noach, S., Faraggi, E. Z., Cohen, G., Avny, Y., Neumann, R., Davidov, D., Lewis, A., Appl. Phys. Lett. 69, 3650 (1996).Google Scholar
2. Chang, S.-C., Liu, J., Bharathan, J., Yang, Y., Onohara, J., Kido, J., Adv. Mater. 11, 734 (1999).Google Scholar
3. Vaeth, K. M., Jensen, K. F., Adv. Mater. 11, 814 (1999).Google Scholar
4. Granström, M., Synth. Met. 102, 1042 (1999).Google Scholar
5. Hebner, T. R., Sturm, J. C., Appl. Phys. Lett. 73, 1775 (1998).Google Scholar
6. Sinigersky, V., Müllen, K., Klappner, M., Schopov, I., Adv. Mater. 12, 1058 (2000).Google Scholar
7. Shin, S.-H., Park, J.-S., Park, J.-W., Kim, H. K., Synth. Met. 102, 1060 (1999).Google Scholar
8. DeAro, J. A., Gupta, R., Heeger, A. J., Buratto, S. K., Synth. Met. 102, 865 (1999).Google Scholar
9. Kocher, C., Montali, A., Smith, P., Weder, C., Adv. Funct. Mater. 11, 31 (2001).Google Scholar
10. Levi, O., Perepelitsa, G., Davidov, D., Shalom, S., Benjamin, I., Neumann, R., Agranat, A. J., Avny, Y., J. Appl. Phys. 88, 1236 (2000).Google Scholar
11. Tada, K., Onoda, M., J. Appl. Phys. 86, 3134 (1999).Google Scholar
12. Tada, K., Onoda, M., Thin Solid Films 363, 195 (2000).Google Scholar
13. Bock, H., Rudolph, G., Z. Anorg. Allg. Chem. 311, 117 (1962).Google Scholar
14. Niino, H., Yabe, A., Appl. Phys. Lett. 63, 3527 (1993).Google Scholar
15. Wenner, R.P., Beckman, A.O., J. Am. Chem. Soc. 54, 2787 (1932).Google Scholar
16. Ramsay, D.A., J. Phys. Chem. 57, 415 (1953).Google Scholar
17. Hussin, D., Norrish, R.G.W., Proc. R. Soc. London, Ser. A 273, 145 (1963).Google Scholar
18. Arvis, M., Devillers, C., Gillois, M., Curat, M., J. Phys. Chem. 78, 1356 (1974).Google Scholar
19. Vaghijani, G.L., J. Chem. Phys. 98 (3), 2123 (1993).Google Scholar