Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-zkswk Total loading time: 0.411 Render date: 2022-11-28T12:55:39.638Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Reduction of Droplet Density onto Hydroxyapatite Films Grown by Pulsed Laser Deposition from Concave-Shaped Targets

Published online by Cambridge University Press:  15 February 2011

Valentin Craciun*
Affiliation:
Laser Department, National Institute for Laser, Plasma and Radiation Physics, Bucharest VMagurele, PO Box MG-36, RO-76900, Romania; craciv@roifa.ifa.ro
Get access

Abstract

A new deposition method, inspired from the crossed fluxes technique, which employs a concave, conic-shaped target is presented here. The rectangular excimer laser beam used for ablation was focused so that the middle of the spot laid exactly on the tip of the concave-shaped target. Each half of the laser spot created a plasma plume on one side of the concave target which was the symmetrical image across the cone axis of that created by the other half of the laser spot. The heavy droplets passed through the plasma interaction region without collisions and, maintaining their direction of motion, moved away from the system axis. The majority of the ablated ions and atoms emitted from one side of the spot collided with those emitted from the other side and, because of the symmetry of the concave-shaped target, acquired a velocity component along the system axis, moving towards the substrate. Scanning electron microscopy investigations showed a significant reduction of droplet density onto the surface of hydroxyapatite layers grown from such concave-shaped targets as compared to films grown from the usual cylindrical targets.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chrisey, D. B. and Hubler, G. K. (Eds.), Pulsed laser deposition of thin films (Wiley, N. Y., 1994).Google Scholar
2. Lubben, D., Barnett, S., Suzuki, K., Gorbatikin, S., and Green, J., J. Vac. Sci. Technol. B 3, 968 (1985).CrossRefGoogle Scholar
3. Barr, W. P., J. Phys. E 2, 1024 (1969).Google Scholar
4. Kinoshita, K., Ishibashi, H., and Kobayashi, T., Jpn. J. Appl. Phys. 33, L417 (1994).CrossRefGoogle Scholar
5. Iwabuchi, M., Kinoshita, K., Ishibashi, H., and Kobayashi, T., Jpn. J. Appl. Phys. 33, L610 (1994).CrossRefGoogle Scholar
6. Holzapfel, B., Roas, B., Schultz, L., Bauer, P., and Saemann-Ischenko, G., Appl. Phys. Lett. 61, 3178 (1992).CrossRefGoogle Scholar
7. Trajanovic, Z., Senapati, L., Sharma, R. P., and Venkatesan, T., Appl. Phys. Lett. 66, 2418 (1995).CrossRefGoogle Scholar
8. Strikovsky, M. D., Klyuenkov, E. B., Gaponov, S. V., Schubert, J., and Copetti, C. A., Appl. Phys. Lett. 63, 1146 (1993).CrossRefGoogle Scholar
9. Gorbunov, A. A., Pompe, W., Sewing, A., Gaponov, S. V., Akhsakhalyan, A. D., Zabrodin, I. G., Kas'kov, I. A., Klyenkov, E. B., Morozov, A. P., Salaschenko, N. N., Dietsch, R., Mai, H., and Vollmar, S., Appl. Surf. Sci. 96–98, 649 (1996).CrossRefGoogle Scholar
10. Torrisi, L., Thin Solid Films 237, 12 (1994).CrossRefGoogle Scholar
11 Cotell, C. M., Appl. Surf. Sci. 69, 140 (1993).CrossRefGoogle Scholar
12. Guillot-Noel, O., Roman, R. Gomez-San, Perriere, J., Hermann, J., Craciun, V., Boulmer-Leborgne, C., Barboux, P., J. Appl. Phys. 80, 1803 (1996).CrossRefGoogle Scholar
13. Craciun, V., Craciun, D., Bunescu, M. C., Dabu, R., and Boyd, I. W., presented at ROMOPTO Intl. Conf., 12-15 Sept. 1997, Bucharest, Romania (unpublished)Google Scholar
14. van de Riet, E., Niellensen, C. J. C. M., and Dieleman, J., J. Appl. Phys. 74, 2008 (1993).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reduction of Droplet Density onto Hydroxyapatite Films Grown by Pulsed Laser Deposition from Concave-Shaped Targets
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Reduction of Droplet Density onto Hydroxyapatite Films Grown by Pulsed Laser Deposition from Concave-Shaped Targets
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Reduction of Droplet Density onto Hydroxyapatite Films Grown by Pulsed Laser Deposition from Concave-Shaped Targets
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *