Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-jjt9s Total loading time: 0.206 Render date: 2021-06-22T12:23:23.599Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Reactive Molecular Dynamics Study of Oxidation of Aggregated Aluminum Nanoparticles

Published online by Cambridge University Press:  04 February 2015

Ying Li
Affiliation:
Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering & Materials Science, Physics & Astronomy and Computer Science, University of Southern California, Los Angeles, CA 90089-0242, U.S.A. Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
Rajiv K. Kalia
Affiliation:
Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering & Materials Science, Physics & Astronomy and Computer Science, University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Aiichiro Nakano
Affiliation:
Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering & Materials Science, Physics & Astronomy and Computer Science, University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Priya Vashishta
Affiliation:
Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering & Materials Science, Physics & Astronomy and Computer Science, University of Southern California, Los Angeles, CA 90089-0242, U.S.A.
Get access

Abstract

Oxidation behavior of aggregated aluminum nanoparticles (Al-NPs), specifically the combustion propagation, is studied, when only part of the aggregated Al-NPs is heated to 1100 K and the rest of the system is kept at 300 K. Here, multi-million atoms molecular dynamics (MD) simulation reveals the sintering/coalescence phenomena for the different diameters (D = 26, 36 and 46 nm) aggregated systems. Various consuming rates of core aluminum are investigated for different layers and different diameters aggregated systems. The formation of Al2O3 fragments outside the shell (the largest covalently bonded aluminum-oxide cluster) structure is confirmed from AlO and AlO2 intermediates. The smaller size of Al-NPs results in faster trend of transition from Al-rich to O-rich for most outside small clusters. However, more core aluminum reacts with shell oxygen leads to faster decreasing of the ratio of O/Al in the shell fragment for larger Al-NPs system.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Yetter, R. A., Risha, G. A. and Son, S. F., P Combust Inst 32, 18191838 (2009).CrossRef
Mench, M. M., Kuo, K. K., Yeh, C. L. and Lu, Y. C., Combust Sci Technol 135 (16), 269292 (1998).CrossRef
Rossi, C., Zhang, K., Esteve, D., Alphonse, P., Tailhades, P. and Vahlas, C., J Microelectromech S 16(4), 919931 (2007).CrossRef
Aumann, C. E., Skofronick, G. L. and Martin, J. A., J Vac Sci Technol B 13(3), 11781183 (1995).CrossRef
Levitas, V. I., Combust Flame 156(2), 543546 (2009).CrossRef
Rai, A., Park, K., Zhou, L. and Zachariah, M. R., Combust Theor Model 10(5), 843859 (2006).CrossRef
Trunov, M. A., Umbrajkar, S. M., Schoenitz, M., Mang, J. T. and Dreizin, E. L., J Phys Chem B 110(26), 1309413099 (2006).CrossRef
Egan, G. C., Sullivan, K. T., LaGrange, T., Reed, B. W., and Zachariah, M. R., J App Phys 115, 084903: 16 (2014)CrossRef
Alavi, S., Mintmire, J. W. and Thompson, D. L., J Phys Chem B 109(1), 209214 (2005).CrossRef
Raut, J. S., Bhagat, R. B. and Fichthorn, K. A., Nanostruct Mater 10(5), 837851 (1998).CrossRef
Puri, P. and Yang, V., J Nanopart Res 12(8), 29893002 (2010).CrossRef
Ananthapadmanabhan, P. V., Thiyagarajan, T. K., Sreekumar, K. P. and Venkatramani, N., Scripta Mater 50(1), 143147 (2004).CrossRef
Chakraborty, P. and Zachariah, M. R., Combust Flame 161(9), 14081416 (2014)CrossRef
Campbell, T. J., Aral, G., Ogata, S., Kalia, R. K., Nakano, A. and Vashishta, P., Phys Rev B 71(20) (2005).CrossRef
Wang, W. Q., Clark, R., Nakano, A., Kalia, R. K. and Vashishta, P., Appl Phys Lett 95(26) (2009).
Wang, W. Q., Clark, R., Nakano, A., Kalia, R. K. and Vashishta, P., Appl Phys Lett 96(18) (2010).
Li, Y., Kalia, R. K., Nakano, A. and Vashishta, P., J App Phys 114, 134312: 110 (2013).
Vashishta, P., Nakano, A., Kalia, R. K. and Ebbsjo, I., Mat Sci Eng B-Solid 37 (13), 5671 (1996).CrossRef
Cohen, J. M. and Voter, A. F., Surf Sci 313(3), 439447 (1994).CrossRef
Piehler, T. N., DeLucia, F. C., Munson, C. A., Homan, B. E., Miziolek, A. W. and McNesby, K. L., Appl Optics 44(18), 36543660 (2005).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reactive Molecular Dynamics Study of Oxidation of Aggregated Aluminum Nanoparticles
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Reactive Molecular Dynamics Study of Oxidation of Aggregated Aluminum Nanoparticles
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Reactive Molecular Dynamics Study of Oxidation of Aggregated Aluminum Nanoparticles
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *