Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-qdp55 Total loading time: 0.265 Render date: 2021-12-08T06:31:16.079Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Rare-Earth-doped Laser Materials: Spectroscopy and Laser Properties

Published online by Cambridge University Press:  11 July 2012

Larry D. Merkle*
Affiliation:
US Army Research Laboratory, Attn RDRL-SEE-M, 2800 Powder Mill Rd, Adelphi, MD 20783, U.S.A.
Get access

Abstract

Trivalent rare earth ions in crystalline or fiber hosts are among the most successful of laser materials, but new dopant-host combinations and more detailed understanding of existing materials continue to be needed. This paper presents a few examples from the work of our team at the Army Research Laboratory, highlighting the interrelation between spectroscopic properties and laser behavior. It focuses on bulk solids, though rare-earth-doped fiber lasers are also extremely important. One system discussed is Nd:YAG, particularly concentration quenching in heavily doped ceramic YAG. Spectroscopic properties of Yb:Y2O3 and Yb:Sc2O3 help to elucidate their laser performance. Spectra indicate that Er:YAG is more promising than Er:Sc2O3 for room temperature laser operation, but that the reverse is true for operation at and somewhat above liquid nitrogen temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Johnson, L. F. and Nassau, K., Proc. IRE 49, 1704 (1961).Google Scholar
2. Taira, T., IEEE J. Sel. Topics Quantum Electron. 13, 798 (2007).10.1109/JSTQE.2007.897174CrossRefGoogle Scholar
3. Merkle, L. D., Dubinskii, M., Schepler, K. L. and Hegde, S. M., Opt. Expr. 14, 3893 (2006).10.1364/OE.14.003893CrossRefGoogle Scholar
4. Danielmeyer, H. G., Blatte, M. and Balmer, P., Appl. Phys. 1, 269 (1973).10.1007/BF00889774CrossRefGoogle Scholar
5. Merkle, L. D., Newburgh, G. A., Ter-Gabrielyan, N., Michael, A. and Dubinskii, M., Opt. Commun. 281, 5855 (2008).10.1016/j.optcom.2008.08.043CrossRefGoogle Scholar
6. Ter-Gabrielyan, N., Dubinskii, M., Newburgh, G. A., Michael, A. and Merkle, L. D., Opt. Expr. 17, 7159 (2009).10.1364/OE.17.007159CrossRefGoogle Scholar
7. Merkle, L. and Ter-Gabrielyan, N., Lumin, J. (2012), doi:10.1016/j.jlumin.2011.12.017.CrossRefGoogle Scholar
8. Fan, T. Y., Ripin, D. J., Aggarwal, R. L., Ochoa, J. R., Chann, B., Tilleman, M. and Spitzberg, J., IEEE J. Sel. Topics Quantum Electron. 13, 448 (2007).10.1109/JSTQE.2007.896602CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rare-Earth-doped Laser Materials: Spectroscopy and Laser Properties
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Rare-Earth-doped Laser Materials: Spectroscopy and Laser Properties
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Rare-Earth-doped Laser Materials: Spectroscopy and Laser Properties
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *