Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T01:32:18.592Z Has data issue: false hasContentIssue false

Rapid Thermal Annealing of Amorphous Silicon Thin Films Grown by Electron Cyclotron Resonance Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

Pei-Yi Lin
Affiliation:
Prakte@gmail.com, National Central University, Jhongli City, Taiwan, Province of China
Ping-Jung Wu
Affiliation:
buckmanp2003@gmail.com, National Central University, Jhongli City, Taiwan, Province of China
I-Chen Chen
Affiliation:
edinchen@gmail.com, National Central University, Jhongli City, Taiwan, Province of China
Get access

Abstract

Hydrogenated amorphous silicon (a-Si:H) thin films were deposited on pre-oxidized Si wafers by electron cyclotron resonance chemical vapor deposition (ECRCVD). The rapid thermal annealing (RTA) treatments were applied to the as-grown samples in nitrogen atmosphere, and the temperature range for the RTA process is from 450 to 950 °C. The crystallization and grain growth behaviors of the annealed films were investigated by Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The onset temperature for the crystallization and grain growth is around 625 ∼ 650°C. The crystalline fraction of annealed a-Si:H films can reach ∼80%, and a grain size up to 17 nm could be obtained from the RTA treatment at 700 °C. We found that the crystallization continues when the grain growth has stopped.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3556 (1977).Google Scholar
2 Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D., and Mahan, A. H., Appl. Phys. Lett. 74, 1860 (1999).Google Scholar
3 Mahan, A. H., Gedvilas, L. M., and Webb, J. D., J. Appl. Phys. 87, 1650 (2000).Google Scholar
4 Kitagawa, M., Setsune, K., Makabe, Y. and Hirao, T.. Jap. J. App. Phys. 27 (1988).Google Scholar
5 Yue, G., Lorentzen, J. D., Lin, J., Han, D., and Wang, Q., Appl. Phys. Lett. 75, 492 (1999).Google Scholar
6 Smit, C., Swaaij, R. A. C. M. M. van, Donker, H., Petit, A. M. H. N., Kessels, W. M. M., and Sanden, M. C. M. van de, J. Appl. Phys. 94, 3582 (2003).Google Scholar
7 Mahan, A. H., Su, T., Williamson, D. L., Gedvilas, L. M., Ahrenkiel, S. P., Parilla, P. A., Xu, Y., and Ginley, D. A., Adv. Funct. Mater. 19, 1 (2009).Google Scholar
8 Langford, A. A., Fleet, M. L., Nelson, B. P., Lanford, W. A., and Maley, N., Phy. Rev. B 45, 13367 (1992).Google Scholar
9 Smets, A. H. M., Matsui, T., and Kondo, M., Appl. Phys. Lett. 92, 033506 (2008).Google Scholar
10 Johnson, E. V., Kroely, L., and Roca, P. I Cabarrocas, Solar Energy Materials & Solar Cells 93, 1904 (2009).Google Scholar