Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-8rn5k Total loading time: 0.172 Render date: 2021-07-24T08:33:46.735Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Quantum Transport in Nanotube-Based Structures

Published online by Cambridge University Press:  15 March 2011

M. Buongiorno Nardelli
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC.
J.-L. Fattebert
Affiliation:
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, CA.
J. Bernholc
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC.
Get access

Abstract

Using state of the art quantum calculations, we have studied the electronic and transport properties of a variety of nanotube-based structures relevant for the design of nanoscale electronic devices. We have investigated the conductance of carbon nanotubes under mechanica distortions such as bending, defects and tube-tube contacts, and analyzed the behavior of carbon nanotube-metal contacts with the aim of explaining the anomalously large contact resistance observed in nanotube devices. Our results provide a clear interpretation of recent experimenta findings and suggest avenues for the use of carbon nanotubes in electromechanical systems.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Iijima, S., Brabec, C., Maiti, A., and Bernholc, J., J. Chem. Phys. 104, 2089 (1996).CrossRefGoogle Scholar
[2] obson, B. I. Yak, Brabec, C. J., and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).Google Scholar
[3] Falo, M. R. et al., Nature 389, 582 (1997).CrossRefGoogle Scholar
[4] Beenakker, C. and Houten, H. van, Solid State Phys. 44, 1 (1991).CrossRefGoogle Scholar
[5] Landauer, R., Philos. Mag. 21, 863 (1970).CrossRefGoogle Scholar
[6] Tian, W. and Datta, S., Phys. Rev. B 49, 5097 (1994).CrossRefGoogle Scholar
[7] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 53, 2044 (1996).CrossRefGoogle Scholar
[8] Chico, L., Benedict, L. X., Louie, S. G., and Cohen, M. L., Phys. Rev. B 54, 2600 (1996).CrossRefGoogle Scholar
[9] Tamura, R. and Tsukada, M., Phys. Rev. B 55, 4991 (1997).CrossRefGoogle Scholar
[10] Tamura, R. and Tsukada, M., Phys. Rev. B 58, 8120 (1998).CrossRefGoogle Scholar
[11] Anantram, M. P. and Govindan, T. R., Phys. Rev. B 58, 4882 (1998).CrossRefGoogle Scholar
[12] Datta, S., Electronic transport in mesocopic systems, University Press, Cambridge, 1995.CrossRefGoogle Scholar
[13] Ferry, F. and Goodnick, S., Transport in nanostructures, University Press, Cambridge, 1997.CrossRefGoogle Scholar
[14] Fisher, D. and Lee, P., Phys. Rev. B 23, 6851 (1981).CrossRefGoogle Scholar
[15] Meir, Y. and Wingreen, N., Phys. Rev. Lett. 68, 2512 (1992).CrossRefGoogle Scholar
[16] Nardelli, M. Buongiorno and Bernholc, J., Phys. Rev. B 60, R16338 (1998).Google Scholar
[17] Nardelli, M. Buongiorno, Phys. Rev. B 60, 7828 (1999).CrossRefGoogle Scholar
[18] Garcia-Moliner, F. and Velasco, V., Phys. Rev. 200, 83 (1991).Google Scholar
[19] Lopez-Sancho, M., Lopez-Sancho, J., and Rubio, J., J. Phys. F: Metal Phys. 14, 1205 (1984).CrossRefGoogle Scholar
[20] Lopez-Sancho, M., Lopez-Sancho, J., and Rubio, J., J. Phys. F: Metal Phys. 15, 851 (1985).CrossRefGoogle Scholar
[21] Charlier, J. C., Lambin, P., and Ebbesen, T. W., Phys. Rev. B 54, R8377 (1996).CrossRefGoogle Scholar
[22] Fattebert, J. L. and Bernholc, J., Phys. Rev. B 62, 1713 (2000).CrossRefGoogle Scholar
[23] Bezryadin, A., Verschueren, A. R. M., Tans, S. J., and Dekker, C., Phys. Rev. Lett. 80, 4036 (1998).CrossRefGoogle Scholar
[24] Nardelli, M. Buongiorno, Yakobson, B. I., and Bernholc, J., Phys. Rev. B 57, R4277 (1998).CrossRefGoogle Scholar
[25] Nardelli, M. Buongiorno, Yakobson, B. I., and Bernholc, J., Phys. Rev. Lett. 81, 4656 (1998).CrossRefGoogle Scholar
[26] Crespi, V. H., Cohen, M. L., and Rubio, A., Phys. Rev. Lett. 79, 2093 (1997).CrossRefGoogle Scholar
[27] Paulson, S. et a., Appl. Phys. Lett. 75, 2936 (1999).CrossRefGoogle Scholar
[28] Tans, S. J., Verschueren, A. R. M., and Dekker, C., Nature 393, 49 (1998).CrossRefGoogle Scholar
[29] Tans, S. J. et al., Nature 386, 474 (1997).CrossRefGoogle Scholar
[30] Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, P., Appl. Phys. Lett. 73, 2447 (1998).CrossRefGoogle Scholar
[31] Bachtold, A. et a., Appl. Phys. Lett. 73, 274 (1998).CrossRefGoogle Scholar
[32] Tersoff, J., Appl. Phys. Lett. 74, 2122 (1999).CrossRefGoogle Scholar
[33] Nardelli, M. Buongiorno, Fattebert, J.-L., and Bernholc, J., x, Phys. Rev. B., 2001.Google Scholar
[34] Xue, Y. Q. and Datta, S., Phys. Rev. Lett. 83, 4844 (1999).CrossRefGoogle Scholar
[35] Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E., and Dekker, C., Nature 391, 59 (1998).CrossRefGoogle Scholar
[36] Rubio, A., Sanchez-Porta, D., Artacho, E., Ordejon, P., and Soler, J. M., Phys. Rev. Lett. 82, 3520 (1999).CrossRefGoogle Scholar
[37] Kong, K., Han, S., and Ihm, J., Phys. Rev. B 60, 6074 (1999).CrossRefGoogle Scholar
[38] Brandbyge, M., Sorensen, M., and Jacobsen, K., Phys. Rev. B 56, 14956 (1997).CrossRefGoogle Scholar
[39] Tersoff, J., Appl. Phys. Lett. 75, 4030 (1999).CrossRefGoogle Scholar
[40] Delaney, P., Ventra, M. D., and Pantelides, S. T., Appl. Phys. Lett. 75, 3787 (1999).CrossRefGoogle Scholar
[41] Frank, S., Ponchara, P., Wang, Z. L., and Heer, W. A. de, Science 280, 1744 (1998).CrossRefGoogle Scholar
[42] Anantram, M. P., Datta, S., and Xue, Y. Q., Phys. Rev. B 61, 14219 (2000).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantum Transport in Nanotube-Based Structures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quantum Transport in Nanotube-Based Structures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quantum Transport in Nanotube-Based Structures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *