Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-22T19:43:44.706Z Has data issue: false hasContentIssue false

Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films

Published online by Cambridge University Press:  15 March 2011

Tae-Youb Kim
Affiliation:
Future Technology Research Division, Electronics and Telecommunication Research Institute, Daejon, 305-350, Korea
Nae-Man Park
Affiliation:
Future Technology Research Division, Electronics and Telecommunication Research Institute, Daejon, 305-350, Korea
Kyung-Hyun Kim
Affiliation:
Future Technology Research Division, Electronics and Telecommunication Research Institute, Daejon, 305-350, Korea
Young-Woo Ok
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
Tae-Yeon Seong
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
CheolJong Choi
Affiliation:
Samsung Advanced Institute of Technology, Yongin Gyeonggi-do 449-712, Korea
Gun Yong Sung
Affiliation:
Future Technology Research Division, Electronics and Telecommunication Research Institute, Daejon, 305-350, Korea
Get access

Abstract

Silicon nanocrystals were in situ grown in a silicon nitride film by plasma enhanced chemical vapor deposition. The size and structure of silicon nanocrystals were confirmed by high-resolution transmission electron microscopy. Depending on the size, the photoluminescence of silicon nanocrystals can be tuned from the near infrared (1.38 eV) to the ultraviolet (3.02 eV). The fitted photoluminescence peak energy as E(eV) = 1.16 + 11.8/d2 is an evidence for the quantum confinement effect in silicon nanocrystals. The results demonstrate that the band gap of silicon nanocrystals embedded in silicon nitride matrix was more effectively controlled for a wide range of luminescent wavelengths.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Light Emission in Silicon : From Physics to Devices, edited by Lockwood, D. J. (Academic Press, San Diego, 1998), Chap. 1.Google Scholar
2. Lalic, N. and Linnros, J., J. Lumin. 80, 263 (1999).Google Scholar
3. Choi, S.-H. and Elliman, R. G., Appl. Phys. Lett. 75, 968 (1999).Google Scholar
4. Schuppler, S. et al. , Phys. Rev. Lett. 72, 2648 (1994).Google Scholar
5. Buuren, T. van, Dinh, L. N., Chase, L. L., Siekhaus, W. J., and Terminello, L. J., Phys. Rev. Lett. 80, 3803 (1998).Google Scholar
6. Wolkin, M. V., Jorne, J., and Fauchet, P. M., Allan, G., and Delerue, C., Phys. Rev. Lett. 82, 197 (1999).Google Scholar
7. Biteen, J. S., Tchebotareva, A. L., Polman, A., Lewis, N. S., and Atwater, H. A., Mat. Res. Soc. Symp. Proc. 770 (2001).Google Scholar
8. Puzder, A., Williamson, A. J., Grossman, J. C., and Galli, G., Phys. Rev. Lett. 88, 97401 (2002).Google Scholar
9. Park, N.-M., Choi, C.-J., Seong, T. Y., and Park, S.-J., Phys. Rev. Lett. 86, 1355 (2001).Google Scholar
10. Wang, Y. Q., Wang, Y. G., Cao, L., and Cao, Z. X., Appl. Phys. Lett. 83, 3474 (2003).Google Scholar
11. Iacona, F., Franzò, G., and Spinella, C., J. Appl. Phys. 87, 1295 (2000).Google Scholar
12. Nishio, K., Kōga, J., Yamaguchi, T., and Yonezawa, F., Phys. Rev. B 67, 195304 (2003).Google Scholar
13. Furukawa, S. and Miyasato, T., Phys. Rev. B 38, 5726 (1988).Google Scholar
14. Wang, L.-W. and Zunger, A., J. Phys. Chem. 98, 2158 (1994).Google Scholar
15. àǦüt, S., Chelikowsky, J. R., and Louie, S. G., Phys. Rev. Lett. 79, 1770 (1997).Google Scholar
16. Proot, J. P., Delerue, C., and Allen, G., Appl. Phys. Lett. 61, 1948 (1992).Google Scholar
17. Light Emission in Silicon : From Physics to Devices, edited by Lockwood, D. J. (Academic Press, San Diego, 1998), Chap. 7.Google Scholar