Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 0.166 Render date: 2021-11-30T18:03:03.056Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Quantum coherence in sub-10 nm metal wires

Published online by Cambridge University Press:  17 March 2011

Douglas Natelson
Affiliation:
Department of Physics and Astronomy, MS61, Rice University, Houston, TX 77005
Robert L. Willett
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Kenneth W. West
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Loren N. Pfeiffer
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

We report weak localization studies of quantum coherence in metal nanowires with widths as small as 5 nm, demonstrating that structures fabricated at sub-50 nm length scales can reveal coherence phenomena not accessible in larger devices. Through selective etching of cleaved molecular-beam epitaxy (MBE)-grown substrates, we produce precise nanoscale surface relief then used as a stencil for metal deposition. This nonlithographic method of lateral definition allows the fabrication of metal (AuPd) nanowires greater than one micron in length with widths below 5 nm, a previously unexplored size regime in studies of quantum corrections to the conductance of disordered metals. Analyzing magnetoresistance data, we find that the coherence time, T φ, shows a low temperature T dependence close to quasi-1D theoretical expectations (T φ ∼ T-2/3 in 5 nm wide wires, while exhibiting a relative saturation as T 0 for wide samples of the same material. Since an externally controlled parameter, the sample geometry, can cause a single material to exhibit both suppression and divergence ofT φ, this finding provides a new constraint on models of dephasing phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dolan, G.J., Osheroff, D.D.. Phys. Rev. Lett. 43, 721 (1979).CrossRefGoogle Scholar
2. Skocpol, W.J., Mankiewich, P.M., Howard, R.E., Jackel, L.D., Tennant, D.M.. Phys. Rev. Lett. 56, 2865 (1986).CrossRefGoogle Scholar
3. Feng, S.. Mesoscopic Phenomena in Solids, ed. Altshuler, B.L., Lee, P.A., Webb, R.A. (Elsevier, 1991) 107; N. Giordano. Phys. Rev. Lett., 131.CrossRefGoogle Scholar
4. Imry, Y., Introduction to Mesoscopic Physics, (Oxford University Press, 1997).Google Scholar
5. Altshuler, B.L., Aronov, A.G., Khmelnitskii, D.E., J. Phys. C 15, 7367 (1982).CrossRefGoogle Scholar
6. Lee, P. and Ramakrishnan, T.V., Rev. Mod. Phys. 57, 287 (1985).CrossRefGoogle Scholar
7. Mohanty, P., Jariwala, E.M.Q., and Webb, R.A., Phys. Rev. Lett. 78, 3366 (1997).CrossRefGoogle Scholar
8. Webb, R.A., Mohanty, P., and Jariwala, E.M.Q., Fortschr. Phys. 46, 779 (1998).3.0.CO;2-6>CrossRefGoogle Scholar
9. Mohanty, P. and Webb, R.A., Phys. Rev. B 55, 13452 (1997).CrossRefGoogle Scholar
10. Altshuler, B.L., Gershenson, M.E., and Aleiner, I.L., Physica E 3, 58 (1998); I.L. Aleiner, B.L. Altshuler, and M.E. Gershenson, Wave Rand. Med. 9, 201 (1999).CrossRefGoogle Scholar
11. Imry, Y., Yukuyama, H., Schwab, P., Europhys. Lett. 47, 608 (1999)CrossRefGoogle Scholar
12. Zawadowski, A., Delft, J. von, and Ralph, D., Phys. Rev. Lett. 83, 2632 (1999)CrossRefGoogle Scholar
13. Zaikin, A.D. and Golubev, D.S., Physica B 280, 453 (2000) and references.CrossRefGoogle Scholar
14. Houshangpour, K. and Maschke, K., Phys. Rev. B 59, 4615 (1999); R. Krishnan and V. Srivastava, Phys. Rev. B 59, R12747 (2000); X.R. Wang, G. Xiong, and S.D. Wang, Phys. Rev. B 61, R5090 (2000).CrossRefGoogle Scholar
15. Khavin, Yu. B., Gershenson, M.E., Bogdanov, A.L., Phys. Rev. Lett. 81, 1066 (1998).CrossRefGoogle Scholar
16. Mohanty, P.. Ann. der Physik 8, 549 (1999).3.0.CO;2-B>CrossRefGoogle Scholar
17. Gougam, A.B., Pierre, F., Pothier, H., Esteve, D., and Birge, N.O., J. Low Temp. Phys. 118, 447 (2000).CrossRefGoogle Scholar
18. Pivin, D.P. Jr., Anderson, A., Bird, J.P., Ferry, D.K.. Phys. Rev. Lett. 82, 4087 (1999).CrossRefGoogle Scholar
19. Huibers, A.G., Folk, J.A., Patel, S.R., Marcus, C.M., Duruöz, C.I., Harris, J.S. Jr., Phys. Rev. Lett. 83, 5090 (1999).CrossRefGoogle Scholar
20. Lin, J.J., Kao, L.Y.. cond-mat/0007417.Google Scholar
21. Giordano, N.. Phys. Rev. B 22, 5635 (1980).CrossRefGoogle Scholar
22. Lin, J.J. and Giordano, N.. Phys. Rev. B 35, 1071 (1987) and references.CrossRefGoogle Scholar
23. Natelson, D., Willett, R.L., West, K.W., Pfeiffer, L.N.. Sol. State Comm. 115, 269 (2000).CrossRefGoogle Scholar
24. Natelson, D., Willett, R.L., West, K.W., Pfeiffer, L.N.. App. Phys. Lett. 77, 1991 (2000).CrossRefGoogle Scholar
25. Durkan, C., Schneider, M.A., Wellend, M.E.. J. Appl. Phys. 86, 1280 (1999).CrossRefGoogle Scholar
26. Altshuler, B.L., Aronov, A.G., Lee, P.A., Phys. Rev. Lett. 44, 1288 (1980); B.L. Altshuler, D. Khmelnitskii, A.I. Larkin, P.A. Lee, Phys. Rev. B 22, 5142.CrossRefGoogle Scholar
27. Hikami, S., Larkin, A.I., Nagoaka, Y.. Prog. Theor. Phys.. 63, 707 (1980).CrossRefGoogle Scholar
28. Gershenson, M.E.. Ann. der Physik 8, 559 (1999).3.0.CO;2-7>CrossRefGoogle Scholar
29. Ashcroft, N.W., Mermin, N.D.. Solid State Physics (Holt, Rinehart, and Winston, New York, 1976).Google Scholar
30. Echternach, P.M., Gershenson, M.E., Bozler, H.M., Bogdanov, A.L., Nilsson, B.. Phys. Rev. B 48, 11516 (1993).CrossRefGoogle Scholar
31. Bergmann, G. and Beckmann, H.. Phys. Rev. B 52, 15687 and references.CrossRefGoogle Scholar
32. Pierre, F., Pothier, H., Esteve, D., Devoret, M.H., Gougam, A.B., Birge, N.O.. cond- mat/0012038.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Quantum coherence in sub-10 nm metal wires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Quantum coherence in sub-10 nm metal wires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Quantum coherence in sub-10 nm metal wires
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *