Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 0.235 Render date: 2021-11-29T07:06:09.361Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Pyrene Fluorescence as a Molecular Probe of Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications

Published online by Cambridge University Press:  01 February 2011

Q. R. Huang
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
David Mecerreyes
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
James L. Hedrick
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
Willi Volksen
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
Curtis W. Frank
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
Robert D. Miller
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.
Get access

Abstract

Fluorescence spectroscopy has been used to study the miscibility of methyl silsesquioxane (MSSQ)/poly(methyl methacrylate-co-dimethylaminoethyl methacrylate) [P(MMA-co-DMAEMA)] hybrid nanocomposites, which are useful in fabricating the next generation of spin-on, ultra-low dielectric constant materials in the microelectronic industries. In this work, we have attached the pyrene group into the PMMA side chains. MSSQ with different amount of initial -SiOH (silanol) endgroups are used to study the effect of endgroup functionality on the phase separation behavior of the hybrid nanocomposites. Pyrene excimer fluorescence results reveal that MSSQ is miscible with P(MMA-co-DMAEMA) only up to 6 wt% P(MMA-co-DMAEMA) loading level, thus establishing an upper limit on local miscibility with MSSQ. As the P(MMA-co-DMAEMA) loading level increases, the excimer to monomer ratios also increase, suggesting that the MSSQ/P(MMA-co-DMAEMA) hybrid nanocomposites move toward greater immiscibility. This ratio approaches that of the neat polymer for domain sizes > 5 nm (SAXS, SANS). The fluorescence results also show that, the lower the amount of initial silanol groups in MSSQ, the greater the immiscibility of the MSSQ and porogen, which ultimately translates into larger pores upon porogen burnout.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Miller, R. D., Science, 286, 421 (1999); (b) G. Maier, Prog. Polym. Sci. 26, 3 (2001); (c) C. N. Nguyen, K. R. Carter, C. J. Hawker, J. L. Hedrick, R. L. Jaffe, R. D. Miller, J. F. Remenar, H. -W. Rhee, P. M. Rice, M. F. Toney, M. Trollsås, and D. Y. Yoon, Chem. Mater. 11, 3080 (1999).CrossRefGoogle Scholar
2. (a) Rottman, C., Grader, G., DeHazan, Y., Melchior, S., and Avnir, D., J. Am. Chem. Soc., 121, 8533 (1999); (b) Dantas de Morais, T.; Chaput, F.; Bailot, J. -P.; Lahlil, K.; Darracq, B.; and Levy, Y. Adv. Mater. 11, 107 (1999).CrossRefGoogle Scholar
3. (a) Lev, O., Tsionsky, M., Rabinovich, L., Glezer, V., Sampath, S., Pankratov, I., J. Gun, Anal. Chem. 67, 22A (1995); (b) M. A. Harmer, W. E. Farneth, and Q. Sun, J. Am. Chem. Soc., 118, 7708 (1996); (c) U. Schubert, New J. Chem. 18, 1049 (1994).CrossRefGoogle Scholar
4. (a) Guizard, C., and Lacan, P., New J. Chem. 18, 1097 (1994); (b) M. Smaihi, T. Jermoumi, J. Marignan, and R. D. Noble, J. Membr. Sci.; 116, 211 (1996).Google Scholar
5. (a) Beecroft, L. L., Ober, C. K., Chem. Mater. 9, 1302 (1997); (b) L. C. Klein, Sol-gel Optics, Processing and Applications; Kluwer: Boston, 1994.CrossRefGoogle Scholar
6. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association: San Jose, CA, 1997.Google Scholar
7. (a) Semerak, S. N., Frank, C. W., Adv. Polym. Sci. 54, 31 (1983); (b) D. C. Dong, M. A. Winnik, Can. J. Chem. 62, 2560 (1985); (c) F. M. Winnik, Chem. Rev., 93, 587 (1993).Google Scholar
8. Birks, J. B., Photophysics of Aromatic Molecules, Wiley-Interscience: New York, 1970.Google Scholar
9. (a) Frank, C. W., Gashgari, M. A., Semerak, S. N., NATO ASI Ser., Ser. C.; 182, 523 (1986); (b) M. A. Gashgari, C. W. Frank, Macromolecules, 21, 2782 (1988); (c) C. W. Frank, W. C. Zin, ACS Symp. Ser. 358 (Photophysics of Polymers), 18 (1987); (d) S. N. Semerak, C. W. Frank, Adv. Chem. Ser., 203 (Polym. Charact.), 751 (1983).Google Scholar
10. (a) Kalyanasundaram, K.; Thomas, J. K., J. Am. Chem. Soc., 99, 2039 (1977); (b) A. Nakajima. Bull. Chem. Soc. Jpn., 44, 3272 (1971).CrossRefGoogle Scholar
11. Utracki, L. A., Polymer Alloys and Blends, Munich: Hanser, 1989.Google Scholar
12. Huang, Q. R.; Volksen, W.; Huang, E.; Toney, M.; Frank, C. W.; and Miller, R. D. Chem. Mater. (submitted).Google Scholar
13. (a) Keeling-Tucker, T., Brennan, J. D., Chem. Mater. 13, 3331 (2001); (b) A. Katz, M. E. Davis, Nature, 403, 286 (2000); (c) K. Matsui, T. Nakazawa, H. Morisaka, J. Phys. Chem.; 95, 976 (1991); (d) V. R. Kaufman, D. Avnir, Langmuir, 2, 717 (1986); (e) K. Matsui, T. Nakazawa, Bull. Chem. Soc. Jpn., 63, 11 (1990).CrossRefGoogle Scholar
14. Petkov, M. P., Weber, M. H., Lynn, K. G., Rodbell, K. P., Volksen, W., and Miller, R. D., Proc. Mater. Res. Soc. (Advanced Metallization Conference), San Diego CA, 2000 (in press).Google Scholar
15. Yang, G. Y., Briber, R. M., Huang, E., Rice, P. M., Volksen, W., Miller, R. D., Polym. Mater. Sci. Eng. 85, 18 (2001).Google Scholar
16. Huang, E., Miller, R. D., et al. (unpublished).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pyrene Fluorescence as a Molecular Probe of Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Pyrene Fluorescence as a Molecular Probe of Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Pyrene Fluorescence as a Molecular Probe of Miscibility in Organic/Inorganic Hybrid Nanocomposites Suitable for Microelectronic Applications
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *