Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-r9vz2 Total loading time: 0.245 Render date: 2021-07-29T00:24:38.616Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Pulsed DC Magnetron Sputtered Rutile TiO2 films for next generation DRAM capacitors

Published online by Cambridge University Press:  26 June 2013

M.A Jithin
Affiliation:
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
Lakshmi Ganapathi Kolla
Affiliation:
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
Navakanta Bhat
Affiliation:
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India
S. Mohan
Affiliation:
Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
Yuichiro Morozumi
Affiliation:
Tokyo Electron Ltd. Minato-ku, Tokyo, Japan
Sanjeev Kaushal
Affiliation:
Tokyo Electron Santa Clara Labs,Santa Clara, California, United States
Corresponding
E-mail address:
Get access

Abstract

In this study, synthesis and characterization of rutile-Titanium dioxide (TiO2) thin films using pulsed DC Magnetron Sputtering at room temperature, along with the fabrication and characterization of MIM capacitors have been discussed. XPS and RBS data show that the films are stoichiometric and have compositional uniformity. The influence of electrode materials on electrical characteristics of the fabricated MIM capacitors has been studied. The Al/TiO2/Al based capacitors show low capacitance density (9 fF/μm2) with low dielectric constant (K=25) and high EOT (3.67 nm) due to low dielectric constant TiO2 phase formation on Al/Si substrate. On the other hand, Ru/TiO2/Ru based capacitors show high capacitance density (49 fF/μm2) with high dielectric constant (K=130) and low EOT (0.7nm) values at high frequency (100 KHz) due to high dielectric constant phase (rutile) formation of TiO2, on Ru/Si substrate. Raman spectra confirm that the films deposited on Ru/Si substrate show the rutile phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, Seong Keun, Kim, Wan-Don, Kim, Kyung-Min, and Hwang, Cheol Seong, Jeong, Jaehack, Appl. Phys. Lett., Vol. 85, No. 18 (2004).
Kim, Seong Keun, Choi, Gyu-Jin, Lee, Sang Young, Seo, Minha, Lee, Sang Woon, Han, Jeong Hwan, Ahn, Hyo-Shin, Han, Seungwu, and Hwang, Cheol Seong, Adv.Mater.,20, 1429(2008).CrossRef
Fröhlich, K., Aarik, J., Ťapajna, M., Rosová, A., Aidla, A. et al. ., J. Vac. Sci. Technol. B, 27, 266 (2009).CrossRef
Fröhlich, K., Hudec, B., Hušeková, K., Aarik, J., Tarre, A., Kasikov, A., Rammula, R., Vincze, A., ECS Transactions, 41(2) 7377 (2011).CrossRef
Schiller, S, Goedicke, K, Reschke, J, Kirchhoff, V, Schneider, S and Milde, F, Surf. Coat. Technol. 61 331( 1993).CrossRef
Kelly, P J and Arnell, R D, J. Vac. Sci. Technol. A ,16 2858 (1998).CrossRef
Kelly, P J and Arnell, R D, J. Vac. Sci. Technol. A, 17 ,945 (1999).CrossRef
WVASE software manual, J.A.Woollam Inc. USA.
Sayers, C.N, Armstrong, N.A., Surf. Sci. 77, 301320 (1978).CrossRef
Zhao, Zhiwei, Kang Tay, Beng, and Yu, Guoqing, Applied Optics, 43, 12811285 (2004)CrossRef
Porto, S. P. S., Fleury, P. A., And Damen, T. C., Phys. Rev. 154, 522 (1967)CrossRef
Ohsaka, T., Yamaoka, S., And Shimomura, O., Solid State Commun. 30, 345 (1979).CrossRef
Balachandran, U. And Eror, N. G., Journal Of Solid State Chemistry 42, 276282 (1982).CrossRef
Osamu, Tonomura, Tomoko, Sekiguchi, Naomi, Inada, Tomoyuki, Hamada, Hiroshi, Miki, and Kazuyoshi, Toril, Journal of the Electrochemical Society, 159(1), G1G5 (2012).
Robertson, J., Vac, J.. Sci. Technol. B, 18, 1785 (2000).CrossRef
Alami, J, Sarakinos, K, Uslu, F, Klever, C, Dukwen, J. and Wuttig, M, J. Phys. D: Appl. Phys.,42, 115204 (5pp) (2009).CrossRef
Brus, V.V., Kovalyuk, Z.D., Parfenyuk, O.A., Vakhnyak, N.D., Semiconductor Physics, Quantum Electronics & Optoelectronics,14, N 4. P. 427431(2011).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Pulsed DC Magnetron Sputtered Rutile TiO2 films for next generation DRAM capacitors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Pulsed DC Magnetron Sputtered Rutile TiO2 films for next generation DRAM capacitors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Pulsed DC Magnetron Sputtered Rutile TiO2 films for next generation DRAM capacitors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *