Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-sbrr8 Total loading time: 0.178 Render date: 2022-01-19T09:25:51.908Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

PROGRESS TOWARDS MELANIN INTEGRATION IN BIO-INSPIRED DEVICES

Published online by Cambridge University Press:  12 June 2012

M. Ambrico
Affiliation:
CNR-Istituto di Metodologie Inorganiche e dei Plasmi, Sezione Territoriale di Bari Via Orabona 4, 70125 Bari (Italy)
P. F. Ambrico
Affiliation:
CNR-Istituto di Metodologie Inorganiche e dei Plasmi, Sezione Territoriale di Bari Via Orabona 4, 70125 Bari (Italy)
A. Cardone
Affiliation:
CNR-Istituto di Chimica dei Composti OrganoMetallici-UOS di Bari Via Orabona 4, 70125 Bari (Italy)
T. Ligonzo
Affiliation:
Dipartimento Interateneo di Fisica, Università degli Studi di Bari “Aldo Moro” Via Orabona 4, 70125 Bari (Italy)
S. R. Cicco
Affiliation:
CNR-Istituto di Chimica dei Composti OrganoMetallici-UOS di Bari Via Orabona 4, 70125 Bari (Italy)
A. Lavizzera
Affiliation:
Dipartimento Interateneo di Fisica, Università degli Studi di Bari “Aldo Moro” Via Orabona 4, 70125 Bari (Italy)
V. Augelli
Affiliation:
Dipartimento Interateneo di Fisica, Università degli Studi di Bari “Aldo Moro” Via Orabona 4, 70125 Bari (Italy)
G. M. Farinola
Affiliation:
Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro” via Orabona 4, 70125 Bari (Italy)
Get access

Abstract

The integration of biopolymers into hybrid electronics is one of the up to date issues in view of the achievement of fully bio-compatible devices. Among ‘hot topics’ in bio-polymer research, synthetic melanin or, briefly, “melanin”, has been recently recognized as a quite intriguing macromolecule thanks to its multifunctional optoelectronic properties. To date, melanin transport properties have been mainly enlightened on pellets, while optical absorption and conductivity properties have been investigated on melanin layers deposited on quartz and indium tin oxide/glass. The unavailability of suitable procedures to improve or promote adequate self assembling of melanin layer deposition onto substrate of interest in organic and solid state electronics (hybrid) like silicon substrates, prevent interesting studies on such structures. The reason stems basically on the difference between the hydrophilic nature of the melanin and the hydrophobic one of the supports (mostly of silicon). However, our group solved this issue and was able to tailor a melanin based metal/insulator/metal and metal/insulator/silicon structures, where synthetic melanin was embedded as the insulating part. This allowed to disclose interesting features related to data storage capabilities of melanin layers deposited on indium tin oxide/glass and silicon never investigated so far. In this work we show an overview on our recent mentioned results, and particular attention is paid on structures on silicon substrates. The use of pSi and nSi substrates and measurements under different environment conditions has enabled to gain insight into ambipolar electrical transport mechanisms, still unexplored. These results constitute a first important basic insight into melanin-based bio inspired structures and represent a significant step towards their integration in several kinds of hybrid organic polymer-based devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mc Ginnes, J., Corry, P. and Proctor, P., Science 183 (1974) 853 10.1126/science.183.4127.853CrossRefGoogle Scholar
[2] Ligonzo, T., Ambrico, M., Augelli, V., Perna, G., Schiavulli, L., Tamma, M.A., Biagi, P.F., Minafra, A. and Capozzi, V., J. Non-Cryst. Solids, 355 (2009) 1221 10.1016/j.jnoncrysol.2009.05.014CrossRefGoogle Scholar
[3] Jatstrzebska, M., Kocot, A. and Tajber, L., J. Photochem. and Photobiol. B: Biology 66 (2002) 201 10.1016/S1011-1344(02)00268-3CrossRefGoogle Scholar
[4] Jatstrzebska, M., Kocot, A., Vij, J.K., Zalewska-Rejdak, J. and Witecki, T., J. Mol. Struct., 606 (2002) 205 10.1016/S0022-2860(01)00873-0CrossRefGoogle Scholar
[5] Bothma, J.P., deBoor, J., Divakar, U., Schwenn, P.E. and Meredith, P., Adv.Mat., 20 (2008) 3539 10.1002/adma.200703141CrossRefGoogle Scholar
[6] Meredith, P., Powell, B.J., Riesz, J., Nighswander-Rempel, S.P., Pederson, M.R. and Moore, E.G., Soft Matt., 2 (2006) 37 10.1039/B511922GCrossRefGoogle Scholar
[7] Rosei, M.A., Mosca, L. and Galluzzi, F., Synth. Metals. 76 (1996) 331 10.1016/0379-6779(95)03483-ZCrossRefGoogle Scholar
[8] Ambrico, M., Cardone, A., Ligonzo, T., Augelli, V., Ambrico, P.F., Cicco, S., Farinola, G.M., Filannino, M., Perna, G. and Capozzi, V., Org. Electron. 11 (2010)1809 10.1016/j.orgel.2010.08.001CrossRefGoogle Scholar
[9] de Albuquerque, J.E., Giacomantonio, C., White, A.G. and Meredith, P., Appl.Phys.Lett. 87 (2005) 061920 10.1063/1.2009833CrossRefGoogle Scholar
[10] Grishchuk, V.P., Davidenko, S.A, Zholner, I.D., Verbitsckii, A.B., Kurik, M.V. and Piryatinskii, Y.P., Techn. Phys. Lett., 28 (2002) 896 10.1134/1.1526875CrossRefGoogle Scholar
[11] Stark, K.B., Gallas, J.M., Zajac, G.W., Eisner, M., Golab, J.T., J.Phys.Chem.B 107 (2003) 3061 10.1021/jp0266594CrossRefGoogle Scholar
[12] Tran, M.L., Powell, B.J. and Meredith, P., Biophys.Journ. 90 (2006) 743 and refs. therein 10.1529/biophysj.105.069096CrossRefGoogle Scholar
[13] Pezzella, A., Iadonisi, A., Valerio, S., Panzella, L., Napolitano, A., Adinolfi, M., and d’Ischia, M., J. Am.Chem.Soc. Vol. 131 (2009) 15270 10.1021/ja905162sCrossRefGoogle Scholar
[14] Sangaletti, L., Borghetti, P., Ghosh, P., Pagliara, S., Vilmercati, P., Castellarin-Cudia, C., Floreano, L., Cossaro, A., Verdini, A., Gebauer, R. and Goldoni, A., Phys. Rev.B 80 (2009) 174203 10.1103/PhysRevB.80.174203CrossRefGoogle Scholar
[15] Ambrico, M., Ambrico, P.F., Cardone, A., Ligonzo, T., Cicco, S.R. di Mundo, R., Augelli, V., Farinola, G.M. Adv. Mater. 23 (2011) 3332 10.1002/adma.201101358CrossRefGoogle Scholar
[16] Ritter, D., Weiser, K., Opt. Comm. 57 (1986) 336 10.1016/0030-4018(86)90270-1CrossRefGoogle Scholar
[17] Groenewoud, Wim in Characterization of polymers by thermal analysis, Elsevier Science, 2001, The Netherland Google Scholar
[18] Pohl, H.A., Journal of Electr. Mater. 15 (1986) 201.10.1007/BF02659632CrossRefGoogle Scholar
[19] Majumdar, H.S., Bandyopadhyay, A., Bolognesi, A. and Pal, A.J., J.Appl.Phys. 91 (2002) 2433 10.1063/1.1445281CrossRefGoogle Scholar
[20] Brutting, W., Riel, H., Beierlein, T. and Reiss, W. J.Appl.Phys. 89 (2001) 1704 10.1063/1.1332088CrossRefGoogle Scholar
[21] Lin, Y-J., J.Appl.Phys. 103 (2008 )063702 10.1063/1.2885096CrossRefGoogle Scholar
[22] Li, L., Ling, Q.D., Lim, S.L., Tan, Y. P., Zhu, C., Chan, D. S. H., Kang, E.T. and Neoh, K.G., Org. Electron. 8 (2007) 401 10.1016/j.orgel.2007.02.002CrossRefGoogle Scholar
[23] Nicollian, E. H., Brews, J. R., in MOS physics and Technology, Wiley, New York, NY, 1981.Google Scholar
[24] Leong, W. L., Lee, P. S., Lohani, A., Lam, Y. M., Chen, T., Zhang, S., Dodabalapur, A. and Mhaisalkar, S. G. Adv.Mat. 20 (2008) 2325 10.1002/adma.200702567CrossRefGoogle Scholar
[25] Martin, B., Kliem, H., J. Appl. Phys. 107 (2010) 076103.10.1063/1.3366703CrossRefGoogle Scholar
[26] Martin, B., Kliem, H., Appl. Phys. Lett. 95 (2009) 032901.10.1063/1.3184791CrossRefGoogle Scholar
[27] Ambrico, M., Ambrico, P.F., Cardone, A., Ligonzo, T., Cicco, S.R. Lavizzera, A., Augelli, V., Farinola, G.M. Appl.Phys.Lett., under review Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

PROGRESS TOWARDS MELANIN INTEGRATION IN BIO-INSPIRED DEVICES
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

PROGRESS TOWARDS MELANIN INTEGRATION IN BIO-INSPIRED DEVICES
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

PROGRESS TOWARDS MELANIN INTEGRATION IN BIO-INSPIRED DEVICES
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *