Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-r9chl Total loading time: 0.213 Render date: 2021-06-20T08:04:23.367Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Preparation of a-Si:H and a-SiGe:H I-Layers for Nip Solar Cells at High Deposition Rates Using a Very High Frequency Technique

Published online by Cambridge University Press:  10 February 2011

S.J. Jones
Affiliation:
Energy Conversion Devices, Inc., Troy, MIl 48084
X. Deng
Affiliation:
Energy Conversion Devices, Inc., Troy, MIl 48084
T. Liu
Affiliation:
Energy Conversion Devices, Inc., Troy, MIl 48084
M. Izu
Affiliation:
Energy Conversion Devices, Inc., Troy, MIl 48084
Get access

Abstract

The 70 MHz Plasma Enhance Chemical Vapor Deposition (PECVD) technique has been tested as a high deposition rate (10 A/s) process for the fabrication of a-Si:H and a-SiGe:H alloy ilayers for high efficiency nip solar cells. As a prelude to multi-junction cell fabrication, the deposition conditions used to make single-junction a-Si:H and a-SiGe:H cells using this Very High Frequency (VHF) method have been varied to optimize the material quality and the cell efficiencies. It was found that the efficiencies and the light stability for a-Si:H single-junction cells can be made to remain relatively constant as the i-layer deposition rate is varied from 1 to 10 Å/s. Also these stable efficiencies are similar to those for cells made at low deposition rates (1 Å/s) using the standard 13.56 MHz PECVD technique. For the a-SiGe:H cells of the same i-layer thickness, use of the VHF technique leads to cells with higher currents and an ability to more easily current match triple-junction cells prepared at high deposition rates which should lead to higher multi-junction efficiencies. Thus, use of this VHF method in the production of large area a- Si:H based multi-junction solar modules will allow for higher i-layer deposition rates, higher manufacturing throughput and reduced module cost.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Chatam, H. and Bhat, P.K., Amorphous Silicon Technology-1989, edited by Thompson, Madan, Taylor, Hamakawa, and Lecomber, , (Mat. Res. Soc. Proc. 149, Pittsburgh, PA, 1992), p. 447452.Google Scholar
2 Shah, A., Dutta, J., Wyrsch, N., Prasad, K., Curtins, H., Finger, F., Howling, A., and Hollenstein, Ch., Amorphous Silicon Technology-1992. edited by Hamakawa, Thompson, Lecomber, Madan and Schiff, (Mat. Res. Soc. Proc. 258, Pittsburgh, PA, 1992), p. 1526.Google Scholar
3 Izu, M., Deng, X., Krisko, A., Whelan, K., Young, R., Ovshinsky, H.C., Narasimhan, K.L. and Ovshinsky, S.R., Proc. 23rd IEEE PV Spec. Conf, p. 919 (1993).Google Scholar
4 Deng, X., Jones, S., Liu, T., Izu, M., Ovshinsky, S., Proc.26rd IEEE PV Sp. Conf., p.591 (1997).Google Scholar
5 Deng, X., Jones, S.J., Liu, T., Izu, M., Ovshinsky, S.R. and Hoffman, K., Amorphous Silicon Technology-1997, edited by Hack, Wagner, Schiff, Schropp, and Shimizu, , (Mat. Res. Soc. Proc. 467, Pittsburgh, PA, 1997), p. 795800.Google Scholar
6 Mackenzie, K.D., Eggert, J.R., Leopold, D.J., Li, Y.M., Paul, W., Phys. Rev. B 31, p. 2198 (1985).CrossRefGoogle Scholar
7 Sichanugrist, P., Suzuki, H., Konagai, M., Takahashi, K., Jap. J. Appl. Phys. 25, p. 440 (1986).CrossRefGoogle Scholar
8 Heintze, M., Zedlitz, R. and Bauer, G.H., Amorphous Silicon Technology-1993, editors Thompson, Schiff, Madan, Tanaka, Lecomber, , (Mat. Res. Soc. Proc. 297, Pittsburgh, PA, 1993), p.49.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Preparation of a-Si:H and a-SiGe:H I-Layers for Nip Solar Cells at High Deposition Rates Using a Very High Frequency Technique
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Preparation of a-Si:H and a-SiGe:H I-Layers for Nip Solar Cells at High Deposition Rates Using a Very High Frequency Technique
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Preparation of a-Si:H and a-SiGe:H I-Layers for Nip Solar Cells at High Deposition Rates Using a Very High Frequency Technique
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *