Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-56sbs Total loading time: 0.243 Render date: 2021-09-17T05:32:56.097Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Preparation and Evaluation of Bimetallic Au Nano-Catalyst with Aerobic Oxidation of 1-Phenylethanol

Published online by Cambridge University Press:  27 April 2015

Shun Nishimura
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Takamasa Takahashi
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Yusuke Yakita
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
Kohki Ebitani*
Affiliation:
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
*Corresponding
*Corresponding Author: ebitani@jaist.ac.jp
Get access

Abstract

Contributions of electronic (or ligand) and geometric (or ensemble) effects on the AuM bimetallic nano-catalyst were elucidated by using a simple aerobic oxidation of 1-phenylethanol to acetophenone on the basis of difference in the ionization energy values (Ei) between Au and M elements. The poly(N-vinylpyrrolidone) (PVP)-protected Au60M40 bimetallic NPs (M = Ag, Cu, Pd, Pt and Ir) were prepared with a polyol reduction method, and stabilized onto the solid base hydrotalcite support affording the Au60M40-PVP/HT catalysts. The yields for acetophenone were observed as the following order; Au60Pd40-PVP/HT (>99%) >> Au60Ag40-PVP/HT (17.4%) > Au60Cu40-PVP/HT (13.8%) > Au60Pt40-PVP/HT (7.1%) > Au60Ir40-PVP/HT (5.5%), at 343 K for 6 h. Differences in the Ei between Au and M (EiAu-EiM) indicted that the yields over the Ag, Cu, Pt, and Ir incorporated Au catalysts were well-understood on the ligand effects theory, though geometric factors such as differences in nanostructure around Au atom in Au60M40 NPs on HT should be further considered as other contributed factors. The significant activity on Au60Pd40-PVP/HT was studied in terms of the electron density of Pd atoms. It was observed that the Pd 4d density was varied by the amount of Au loading. According to these observations combined with our previous studies, we suggest that the advantages in AuPd bimetallic catalyst are not only in the ligand effect serving negatively-charged Au but also the ensemble effect of neighbor Pd, and they synergistically contribute to the novel activity for aerobic alcohol oxidation over AuPd catalyst.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Villa, A., Wang, D., Su, D. S. and Prati, L., Catal. Sci. Technol. 5, 55 (2015) (review).CrossRef
Brett, G. L., He, Q., Hammond, C., Miedziak, P. J., Dimitratos, N., Sanker, M., Herzing, A. A., Conte, M., Lopez-Sanchez, J. A., Kiely, C. J., Knight, D. W., Taylor, S. H. and Hutchings, G. J., Angew. Chem. Int. Ed. 50, 10136 (2011).CrossRef
Nishimura, S., Yakita, Y., Katayama, M., Higashimine, K. and Ebitani, K., Catal. Sci. Technol. 3, 351 (2013).CrossRef
Nishimura, S., Yakita, Y., Katayama, M., Higashimine, K. and Ebitani, K., NSTI Nanotech Conf. Technical Proc. 1, 448 (2013).
Corbos, E. C., Ellis, P. R., Cookson, J., Briois, V., Hyde, T. I., Sanlar, G. and Bishop, P. T., Catal. Sci. Technol. 3, 2934 (2013).CrossRef
Edwards, J. K., Ntainjua, E.N., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J., Angew. Chem. Int. Ed. 48, 8512 (2009).CrossRef
Nishimura, S., Ikeda, N. and Ebitani, K., Catal. Today 232, 89 (2014).CrossRef
Xu, J., White, T., Li, P., He, C., Yu, J., Yuan, W. and Han, Y., J. Am. Chem. Soc. 132, 10398 (2010).CrossRef
Ruban, A. V., Skriver, H. L. and Nørskov, J. N., Phys. Rev. B 59, 15990 (1999).CrossRef
Zhang, H., Watanabe, T., Okumura, M., Haruta, M. and Toshima, N., Nat. Mater. 11, 49 (2012).CrossRef
Tsunoyama, H., Ichikuni, N., Sakurai, H. and Tsukuda, T., J. Am. Chem. Soc. 131, 7086 (2009).CrossRef
Zhang, H., Okumura, M. and Toshima, N., J. Phys. Chem. C 115, 14883 (2011).CrossRef
Shriver, D. F. and Atkins, P. W., “Inorganic Chemistry”, 3rd edn (Oxford Univ. Press, 1999).Google Scholar
Njoki, P. N., Lim, I. I. S., Mott, D., Park, H. Y., Khan, B., Mishra, S., Sujakumar, R., Luo, J. and Zhong, C. J., J. Phys. Chem. C 111, 14664 (2007).CrossRef
Dash, P., Bond, T., Fowler, C., Hou, W., Coombs, N. and Scott, R. W. J., J. Phys. Chem. C 113, 12719 (2009).CrossRef
Mori, K., Hara, T., Mizugaki, T., Ebitani, K. and Kaneda, K., J. Am. Chem. Soc. 126, 10657 (2004).CrossRef
Nishimura, T., Kakiuchi, N., Inoue, M. and Uemura, S., Chem. Commun., 1245 (2000).
Nascents, P. A. P., de Catro, S. G. C., Landers, R. and Kleiman, G. G., Phys. Rev. B 43, 4659 (1991).CrossRef
lee, Y., Jeon, Y., Chung, Y., Lim, K., Whang, C. and Oh, S., J. Korean Phys. Soc. 37, 451 (2000).

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Preparation and Evaluation of Bimetallic Au Nano-Catalyst with Aerobic Oxidation of 1-Phenylethanol
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Preparation and Evaluation of Bimetallic Au Nano-Catalyst with Aerobic Oxidation of 1-Phenylethanol
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Preparation and Evaluation of Bimetallic Au Nano-Catalyst with Aerobic Oxidation of 1-Phenylethanol
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *