Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-6x4lw Total loading time: 0.457 Render date: 2021-05-06T23:18:07.635Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Preparation and Assessment of Superhydrophobic Organic-Inorganic Hybrid Coatings for Conservation of Yungang Grottoes

Published online by Cambridge University Press:  14 April 2011

Shipeng Tian
Affiliation:
Division of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
Shaojun Liu
Affiliation:
Division of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China
Feng Gao
Affiliation:
State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, China Chinese Academy of Cultural Heritage, Beijing, 100029, China
Min Fan
Affiliation:
Baiyun Cultural Heritage Conservation Engineering Co. Ltd., Guangzhou, 510540, China
Jianguang Ren
Affiliation:
Yungang Grottoes Research Institute, Datong, 037006, China
Get access

Abstract

Yungang Grottoes in Shanxi, China, which represent outstanding example of Chinese outdoor immovable stone artifacts, are precious world cultural heritage. In the present study, the preparation and assessment of superhydrophobic hybrid coatings with photocatalytic activity on the sandstone substrate collected from Yungang were explored preliminarily. The protection efficiency of coating is investigated by measuring the water-stone contact angles, water vapor permeability, water absorption, and resistance to acid and salt corrosion. Results show that the superhydrophobic organic-inorganic hybrid coatings with photocatalytic and self-cleaning properties are highly suitable for the conservation of stone monuments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Tsui, N., Flatt, R. J., and Schere, G. W., J. Cult. Herit. 4, 109 (2008).CrossRefGoogle Scholar
2. Kanellopoulou, D. G. and Koutsoukos, P. G., Langmuir. 19, 5691 (2003).CrossRefGoogle Scholar
3. Yüce, M. Y., Demirel, A. L., and Menzel, F., Langmuir. 21, 5073 (2005).CrossRefGoogle Scholar
4. Manoudis, P. N., Tsakalof, A., Karapanagiotis, I., Zuburtikudis, I., and Panayiotou, C., Surf. Coat. Technol. 203, 1322 (2009).CrossRefGoogle Scholar
5. Scherer, G. W., J. Am. Chem. Soc. 73, 3 (1990).Google Scholar
6. Mosquera, M. J., de los Santos, D. M., and Rivas, T., Langmuir. 26, 6737 (2010).CrossRefGoogle Scholar
7. Kim, E. K., Won, J., Do, J. Y., Kim, S. D., Kang, Y. S., J. Cult. Herit. 10, 214 (2009).CrossRefGoogle Scholar
8. Herrera, L. K. and Videla, H. A., Int. Biodeter. Biodegr. 63, 813 (2009).CrossRefGoogle Scholar
9. Ma, Q., Liu, S. J., Weng, L. Q., Liu, Y., Liu, B., J. Alloys. Comp. 501, 333 (2010).CrossRefGoogle Scholar
10. Tsakalof, A., Manoudis, P., Karapanagiotis, I., Chryssoulakis, I., Panayiotou, C., J. Cult. Herit. 8, 69 (2007).CrossRefGoogle Scholar
12. Ruffolo, S. A., La Russa, M. F., Malagodi, M., Oliviero Rossi, C., Palermo, A. M., and Crisci, G. M., Appl. Phys. A. 100, 829 (2010).CrossRefGoogle Scholar
13. Delalieux, F., Cardell, C., Todorov, V., Dekov, V., and Grieken, R., J. Cult. Herit. 2, 43 (2008).CrossRefGoogle Scholar
14. D’ Arienzo, L., Scarfato, P., and Incarnato, L., J. Cult. Herit. 9, 253 (2008).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Preparation and Assessment of Superhydrophobic Organic-Inorganic Hybrid Coatings for Conservation of Yungang Grottoes
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Preparation and Assessment of Superhydrophobic Organic-Inorganic Hybrid Coatings for Conservation of Yungang Grottoes
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Preparation and Assessment of Superhydrophobic Organic-Inorganic Hybrid Coatings for Conservation of Yungang Grottoes
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *