Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-r9wg7 Total loading time: 0.239 Render date: 2021-05-10T02:56:38.213Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Porous Scaffolds Consisting of Collagen, Chondroitin Sulfate, and Hydroxyapatite with Enhanced Biodegradable Resistance for Cartilage Regeneration

Published online by Cambridge University Press:  14 March 2011

H. Kaneda
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo, Japan
T. Ikoma
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo, Japan
T. Yoshioka
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo, Japan
M. Nishi
Affiliation:
Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
R. Matsumoto
Affiliation:
Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
T. Uemura
Affiliation:
Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
J. S. Cross
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo, Japan
J. Tanaka
Affiliation:
Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo, Japan
Get access

Abstract

Porous scaffolds of alkaline-soluble collagen including nanocomposite particles of chondroitin sulfate and low crystalline hydroxyapatite for cartilage regeneration were fabricated by freeze-drying and thermal dehydration treatments; porous collagen scaffolds were also synthesized as a reference. The scaffolds were cross-linked using glutaraldehyde (GA) vapor treatment in order to enhance biodegradable resistance. Microstructural observation with scanning electron microscope indicated that the scaffolds with and without GA cross-linkage had open pores between 130 to 200 μm in diameter and well-interconnected pores of 10 to 30 μm even after cross-linkage. In vitro biodegradable resistance to collagenase was significantly enhanced by GA cross-linking of the scaffolds. All these results suggest that the GA cross-linked scaffolds consisting of collagen, chondroitin sulfate, and low crystalline hydroxyapatite have suitable microporous structures and long-term biochemical stability for cartilage tissue engineering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Chu, C. R., Coutts, R. D., Yoshioka, M., Harwood, F. L., Monosov, A. Z. and Amiel, D., J Biomed Mater Res 29 (1995), pp. 1147–1154.CrossRefGoogle Scholar
[2] Grande, D. A., Halberstadt, C., Naughton, G., Schwartz, R. and Ryhana, M., J Biomed Mater Res 34 (1997), pp. 211–220.3.0.CO;2-L>CrossRefGoogle Scholar
[3] Ohyabu, Y., Adegawa, T., Yoshioka, T., Ikoma, T., Shinozaki, K., Uemura, T., Tanaka, J., Journal of Biomaterials Science, 20, 1861–1874, (2009).CrossRefGoogle Scholar
[4] Ma, Lie, Gao, Changyo, Mao, Zhengwei, Zhou, Jie, Shen, Jiacong, Hu, Xueqing, Han, Chunmao, Biomaterials, 24, 4833–4841, (2003).CrossRefGoogle Scholar
[5] Jorge-Herrero, E, Fernandez, P, Turnay, J, Olmo, N., Calero, P., Garcia, R., Freile, I., Castillo-Olivares, J. L., 20, 539–45, (1999).CrossRefGoogle Scholar
[6] Ikoma, T., Muneta, T., Tanaka, J., Key Eng. Mater., Vol. 192-195, 487–490, (2001).Google Scholar
[7] Adegawa, T., Ohyabu, Y., Uemura, T., Yoshioka, T, Shinozaki, K., Tanaka, J., Key Eng. Mater., Vol. 396-398, pp707–710 (2009).Google Scholar
[8] Choi, Y. S., Hong, S. R., Lee, Y. M., Song, K. W., Park, M. H., Nam, Y. S., Biomaterials, 20, 409–417, (1999).CrossRefGoogle Scholar
[9] Olde Damink, LHH, Dijkstra, PJ, Van Luyu, MJA, Van Wachem, PB, Nieuwenhuis, P, Feijen, J, J Mater Sci Mater Med, 6, 460–472, (1995).CrossRefGoogle Scholar
[10] Park, Si-Nae, Park, Jong-Chul, Kim, Hea Ok, Song, Min Jung, Suh, Hwal, Biomaterials, 23, 1205–1212, (2002).CrossRefGoogle Scholar
[11] Hing, KA, Best, SM, Bonfield, W, J Mater Sci Mater Med, 10, 135–145, (1999).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Porous Scaffolds Consisting of Collagen, Chondroitin Sulfate, and Hydroxyapatite with Enhanced Biodegradable Resistance for Cartilage Regeneration
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Porous Scaffolds Consisting of Collagen, Chondroitin Sulfate, and Hydroxyapatite with Enhanced Biodegradable Resistance for Cartilage Regeneration
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Porous Scaffolds Consisting of Collagen, Chondroitin Sulfate, and Hydroxyapatite with Enhanced Biodegradable Resistance for Cartilage Regeneration
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *